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GENERAL INTRODUCTION 

Starch is the primary energy reserve in the plant kingdom and is used for growth of 

the plant In green plants starch is found in roots, tubers, stems, leaves, fruits, and seeds. 

Starch is largely composed of two polymers of glucose: the essentially linear amylose and the 

branched amyiopectin. In general, starches contain 20-30% amylose and 70-80% 

amyiopectin. The ratio and molecular structures of these two polymers greatly influence the 

physical properties of starch. Plants synthesize and deposit starch in the form of granules. 

Starch granules are typically classified according to botanical origin, size, shape, and x-ray 

diffraction pattern. Within starch granules, the molecular structures and arrangement of 

amylose and amyiopectin produce alternating concentric layers of crystalline and amorphous 

material. The crystalline layers are composed almost entirely of highly ordered amyiopectin 

branches vdiich are arranged into double helices. The packing arrangements of double 

helices within the crystalline layers give rise to the three known x-ray diffraction patterns of 

native starches: A, B, and C. The amylopectins of A-type starches are known to have 

relatively short average branch chain lengths (dp 23-29) whereas those of B-type starches 

have amylopectins of relatively long average branch chain lengths (dp 30-44). The 

amylopectins of C-type starches display intermediate average branch chain lengths (dp 26-

30). The molecular structures, granular characteristics, and crystalline arrangements depend 

greatly on botanical source, maturity, growth conditions, and sample history. 
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The properties of nadve starches may not achieve the specific functionalities needed 

in various food and industrial applications. To overcome these limitations chemical, physical 

and genetic modifications have been utilized to enhance or modify the properties of starches. 

With the suitable modification(s) starch paste clarity is increased, retrogradation is retarded, 

and stability to acid, shear and heat are increased. Modification of starches can yield 

customized starches for specific applications 

Extrusion of starch and starch-based foods has become a well accepted processing 

method. Starch extrusion variables including temperature, moisture, shear, pressure, 

reagents, and processing time allow for production of novel products. Using extrusion, the 

potential exists for production of physically and/or chemically modified starches which have 

unique properties and fimtionalities fiY>m those of conventionally modified starches. 

A fimdamental understanding of the relationship between the molecular structures of 

starch and its physical properties is critical in choosing starches for specific applications. 

Similarly, an understanding of the effect of extrusion processing parameters on starch 

molecular structures and the physical properties of resulting extruded starches will guide 

development of processing parameters to produce specific physical properties. 

The objectives of this study are to investigate and relate the molecular structures of 

normal potato, waxy potato, yam, and sweet potato starches to their physical properties, to 

examine the effects of extrusion variables on the pasting properties of cross-linked 

hydroxypropylated com starches, and to examine the molecular structures of extraded, cross-

linked hydroxypropylated com starches. 
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Dissertation Organizatioii 

This dissertation consists of three p£^)ers. The first paper, "Comparison of Waxy 

Potato with Other Root and Tuber Starches", has been accepted for publication by 

Carbohydrate Polymers. The second paper, "Effects of Extrusion Parameters on Cross-

Linked Hydroxypropylated Com Starches. 1. Pasting Properties", will be submitted to Cereal 

Chemistry for publication. The third p^)er. Effects of Extrusion on Cross-Linked 

Hydroxypropylated Com Starches, n. Morphological and Molecular Characterization," will 

be submitted to Cereal Chemistry for publication. The three p^)ers are preceded by a 

General Introduction and Literature Review and followed by a General Conclusion and 

Acknowledgments. 
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LITERATURE REVIEW 

General Properties of Starch 

Starch, produced via photosynthesis, is the main energy reserve in higher plants. 

Starch is found throughout nature in leaves, stems, fruits, nuts, roots, and tubers (Lineback, 

1984, Swinkels, 1985, Robyt, 1998). In nature, starch is synthesized in granules. Starch 

granules are composed mainly of two polysaccharides: amylose and amylopectin. Minor 

amounts of lipids, proteins, and phosphorous are also contained. The composition of the 

granule and the molecular structure of its components are greatly affected by maturity, 

mutation, growth conditions, and cultivar (Boyer et al. 1976, Lineback 1984, Swinkels 1985; 

Asaoka et al. 1985, Morrison and Gadan 1987, Noda et al. 1996) . Starch comprises a large 

portion of the human diet and contributes important fimctional properties to food products. 

Starch offers great functional diversity in its properties through cultivar differences and 

various chemical and physical modifications which contribute to the importance of starch in 

food and industrial explications. 

Characteristics of Amylose 

Amylose is a primarily linear polysaccharide of D-glucose units linked a-l->4 with a 

very low amount of al->6 linked branches (Greenwood 1964, French 1973, Banks and 

Greenwood 1975, Robyt 1998). The molecular size of the amylose fraction of starches range 

from a number average degree of polymerization (dpj of 2110 for potato to 990 for maize 
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(Takeda et al. 1988, Suzuki et al. 1994). Amylose finm cereal starches is generally smaller 

than that from other sources (Hizukuri 1996). The linear nature of amylose was generally 

accepted until Peat et al. (1949) foimd that crystalline sweet potato P-amylase hydrolyzed 

only 70% of amylose to maltose. The P-amylolysis limit of a truly linear amylose molecule 

would be 100%. However, the p-amylolysis of amylose ranges from 70-82% and increases 

to 100% with addition of pullulanase (Banks and Greenwood 1967, Banks et al. 1973, 

Greenwood 1976, Hizukuri et al. 1981, Hizukuri et al. 1983a, Takeda and Hizukuri, 1989, 

Cura et al. 1995). In solution, amylose exists in random coils but rapidly complexes with 

itself or appropriate complexing agents to form imperfect crystallites that precipitate rapidly 

from solution (Whistler 1965, Miles et al. 1984, Colonna et al. 1992). Amylose, in neutral 

aqueous solution, forms a helix with 6-8 glucose units per turn (Rundle and French 1943, 

Banks et al. 1971, Yamashita and Monobe 1971, French and Murphy 1977, Wu and Sarko 

1978, Davies et al. 1980, Billiaderis and Galloway 1989). French (1972) suggested that the 

strands of the double helix of retrograded amylose are left handed. In solution, the 

retrogradation of amylose is rapid, producing large and imperfect crystallites (Flory 1953, 

Greenwood 1964). The precipitate is a mixture of amorphous and crystalline regions and can 

display A or B-type x-ray diffraction patterns (Kainuma and French 1971, Wu and Sarko 

1978, Kitamura et al. 1984, Buleon et al. 1984, Jane and Robyt 1984, Ring et al. 1987, Le 

Bail et al. 1993, Colonna et al. 1992, Caims et al. 1995). It has been observed that amylose 

from different sources with varying chain lengths retrograde at different rates, with amylose 

of dp 80-100 retrograding most readily (Whistler and Johnson 1964, Whistler 1953, 
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PfannenuUer et al. 1971, Gidley et al. 1986, Gidley et al. 1989, Eerlingen et al. 1993). The 

rate and extent of amylose retrogradation is affected by many &ctors including temperature, 

pH, salt or sugar content, and storage time. The inter-chain associations or retrogradation of 

amylose is thought to be responsible for the retrogradation of starch gels (Miles et al. 1984, 

Billiaderis and Seneviratne 1990). 

Amylose and iodine form a complex which is dark blue in color and is conveniently 

used to measure the amylose content of starches (Bates et al. 1943, Lansky et al. 1949, Banks 

et al. 1971, Banks et al. 1974, Pfaimemuller 1978). The intensity of the blue color from the 

iodine-amylose gives information about the relative length of the amylose chains (Bailey and 

Whelan 1961). Potentiometric titration of amylose with iodine has been used to determine 

the amylose content of starches (Schoch 1964, Takeda et al. 1983, Kasemsuwan and Jane 

1995). Long-chain alcohols and lipids can form complexes with amylose that are able to 

prevent or retard retrogradation (Schoch 1942, Lansky et al. 1949, Kuge and Takeo 1968, 

Hibi and Kuge 1987, Gudmundson and Eliasson 1990, Eerlingen et al. 1994). These 

complexes can be used to separate amylose from amylopectin and to modify the properties of 

amylose in a system containing complexing agents (Schoch 1942, Winter and Sarko 1972, 

Winter and Sarko 1974, Rutenberg 1980, Jane et al. 1985, Biliaderis and Galloway 1989). 

Characteristics of Amylopectin 

Amylopectin is a branched polysaccharide of D-glucose units linked a-l->4 

containing approximately 5% a-l->6 branch points. The average branch-chain length is 
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approximately dp 20 (Whistler and Daniel 1984, Robyt 1998). High amylose maize starch 

has an average branch-chain length of above dp 30 (Hizukuri et al. 1983a, Hizukuri 1985, 

Jane and Chen 1992). Molecular structures, including average branch chain length of 

amylopectin, have been correlated with starch x-ray dif&action type (French 1972, Hizukuri 

et al. 1983a, Lineback 1984, Hizukuri 1985, Manners 1989, Jane et al. 1997). Shorter 

average amylopectin branch-chain lengths are well correlated to A-type starches whereas 

longer average branch-chain lengths are correlated to B-type starches and intermediate 

average branch-chain lengths correlated to C-type starches (Hizukuri et al. 1983, Hizukuri 

1985, Chen and Jane 1994, Hanashiro et al. 1996). Increasing branch-chain length results in 

higher gelatinization temperatures (Jane et al. 1992), and higher paste viscosity and turbidity 

of starch solution (Jane and Chen 1992). The conceptual model of amylopectin contains 

three types of chains: A, B, and C. A chains are connected to B and C chains through an 

a 1 ->6 branch point at their reducing end and have no other branch chains. B chains are 

similarly coimected to other B and C chain and may have A and B branch chains. The C 

chain is the only branch in the molecule to carry a free reducing group. The ratio of A:B 

chains has been used to characterize the structure of amylopectin (Atwell et al. 1980, 

Manners and Matheson 1981, Enevoldsen and Juliano 1988, Hizukuri and Maehara 1990). 

Many models of amylopectin structure have been proposed and reviewed (Wolfram and 

Khadem 1965, Banks and Greenwood 1975, Whistler and Daniel 1984, Hizukuri 1996). The 

current model (Figure la) was first proposed by Nikuni (1969) and further modified by 

French (1972) and Robin et al. (1974). Hizukuri (1986) noted a polymodal distribution of 
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Figure I. A cluster s^cture of amylopectin as proposed by French (1973) (a) and further 
aeimed with B-chain classification by Hizukuri (1986) (b). 
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amylopectin branch chains, and fiirther modified the model by classification of B chains into 

B1-B4 fractions (Figure lb). The Hizukuri model (1986) suggested that amylopectin is 

composed of numerous clusters that may be randomly or regularly distributed and linked by 

long chains extending through two or more clusters. The B chains have also been classified 

as Ba or Bb chains if A chains were bound (Ba) or not boimd (Bb) (Hizukuri and Maehara 

1990, Hizukuri and Maehara 1991). Jane et al. (1997) proposed models showing that branch 

points in A-type starches are scattered in both the amorphous and crystalline regions whereas 

branch points in B-type starches are located more in the amorphous regions. Those a-l->6 

linkages present in the crystalline regions were preserved in Naegeli dextrins of the starches 

Hence, greater amoimts of branches were preserved in the Naegeli dextrins of A-type starches 

than for B-type starches. 

Intermediate Component 

Several studies have reported material fractionated from starch with properties 

intermediate between those of amylose and amylopectin (Lansky et al. 1949, Peat et al. 1952, 

Greenwood 1975, Takeda et al. 1989). The intermediate material had iodine binding values 

and P-amylolysis limits between those of amylose of amylopectin. Maize starch 

(Lansky et al, 1949) and high amylose maize starch (Greenwood and Macken2de 1966, Banks 

et al. 1974, Colonna and Mercier 1984, Baba and Arai 1984) have both been shown to 

possess intermediate material. 
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Organization of the Starch Grannie 

Amylose and amylopectin are arranged in natme in semi-crystalline macromolecular 

structures called granules (French 1972, Hood 1982, Robyt 1998). Starch granule size and 

shape vary with botanical origin, maturity, and growing conditions (Banks et al. 1974, 

Greenwood 1979, Morrison and Gadan 1987, Jane et al. 1994). The granules of potato starch 

are oval (15-80|im) whereas the granules of normal maize are round or polygonal (5-20 fim) 

(Jane et al. 1994). Scanning electron microscopy has proven to be an effective tool for 

identification of starch, extent of starch damage, and extent of enzymic attack. Under 

polarized light microscopy, native starch granules display a birefringence pattern known as 

the Maltese cross. The Maltese cross indicates a high degree of order (crystallinity) within 

the granule. At the center of the Maltese cross is the hilimi, >^ch is believed to be the 

starting point of biosynthesis (French 1984). Starch granules exhibit alternating amorphous 

and crystalline growth rings encircling the hilum. Amylopectin forms clusters, lines up 

perpendicular to the growth rings, and grows from the hilum to the surface of the granule in a 

radial arrangement (French 1972, Nikuni 1978, French 1984, Lineback 1984). Amylopectin 

clusters are present in both amorphous and crystalline regions (French 1984). Amylose is 

also located in both crystalline and amorphous regions (Kainuma and French 1971, French 

1972, Nikuni 1978, Blanshard 1986, Jane et al. 1992, Kasemsuwan and Jane 1994). 

X-ray dif&action can be used to examine the crystalline nature of the starch granule 

and to define the relative amounts of crystalline and amorphous phases within the granule. 

Double helices of amylopectin branch chains are ordered into three arrangements giving 
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three x-ray dif&action patterns of starch: A, B, and C-types (Wu and Sarko 1978, Zobel 

1988). The C-type pattern is intermediate between those of A- and B-types and is proposed 

to be a mixture of A- and B-type unit cells (Wu and Sarko 1978, Imberty et al. 1988). These 

double helices of amylopectin branch chains are stabilized by hydrogen and Vander Waals 

bonds (Imberty et al. 1988). The double helices for A-type starches are packed into a 

monoclinic lattice whereas for B-type starches double helices are packed in a hexagonal 

arrangement (Figure 2). 

The A chains and outer B chains of amylopectin are mainly responsible for the crystallinity 

of starch granules. The crystalline packing arrangement has great significance to the 

properties of starches. Those of the B-type have lower gelatinization temperatures and 

thermal stability, greater granular swelling and increased enzymatic resistance to hydrolysis. 

Minor Components of Starch 

Starch lipids 

Starches contain two types of lipids; surface lipids which are derived from non-starch 

lipids and internal starch lipids that are monoacyl lipids (Morrison 1988). The non-starch 

lipids in mature wheat starch occur in the aleurone region and are mostly triglycerides with 

small amounts of free fatty acids and monoacyl lipids (Morrison et al. 1975, Morrison 1988). 

In cereal starches the internal lipids are primarily monoacyl lipids consisting of free fatty 

acids and lysophospholipids (Schoch 1942, Morrison et al. 1984, Morrison 1988). In 

contrast, the starches of roots and tubers do not have significant amounts of lipids (Swinkels 
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Figure 2. The arrangement of the double helices in starch ciystalline structure in A-type 
(Imberty et al. 1987) (a) and B-type (Imberty and Perez 1988) (b) polymorphs. 



www.manaraa.com

13 

1985, Moirison 1988). In non-waxy cereal starches the amounts of lipids are proportional to 

the amounts of amylose (Morrison et al. 1984, Soulaka and Morrison 1985). Starch lipids are 

thoi^t to exist in the amorphous regions of the starch granule. C MAS-NMR has shown 

there to be a weak shift for the amylose-lipid complex in barley starch (Morrison et al. 1993). 

The difScul^ in extraction of lipids from the granule is thoiight to be due to the structure of 

the granule rather than resistance of the inclusion complex (Morrison and Coventry 1989). 

These internal starch lipids are intimately involved in modifying the properties of starch, 

including granular swelling, gelatinization, gel viscosity, retrogradation, and susceptibility to 

amylolytic degradation (Maningat and Juliano 1983, Swinkels 1985, Soulaka and Morrison 

1985, Biliaderis and Seneviratne 1990, Morrison et al. 1993). 

Phosphorous derivatives 

Naturally occurring phosphorous is found in starches in three main forms; inorganic 

phosphate, phosphate monoesters, and phospholipids. Phospholipids are the major source of 

phosphorous in cereal starches with minor amounts occurring as monoesters and inorganic 

phosphate (Schoch 1942, Gracza 1965, Tabata et al. 1975, Morrison 1981, Hizukuri et al 

1983b, Morrison et al. 1984, Soulaka and Morrison 1985, Morrison 1988, Lim et al. 1994, 

Kasemsuwan and Jane 1995). Root and tuber starches contsdn significant amounts of 

monophosphate esters covalently bound to starch (Postemak 1935, Hodge et al. 1948, 

Hizukuri et al. 1970, Swinkels 1985, Lim and Seib 1993, Lim et al. 1994, Kasemsuwan and 

Jane 1995). Phosphate monoesters have been examined closely in potato starch and found to 
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be located exclusively on the amylopectin and more densely located at the core of the granule 

(Gracza 1965, Jane and Shen 1993). Tabata and Hizukuri (1971) indentified 1,28, and 61% 

of phosphate monoesters were located on C-2, C-3 and C-6, respectively in potato starch 

hydrolysate. Tabata et al. (1975) reported similar results for the phosphate derivatives in 

waxy rice starch. Fractionated potato starch was reported to contain 0.165,0.083 and 

0.008% phosphorous in amylopectin, intermediate component, and amylose, respectively 

(Radomski and Smith, 1963). Tabata et al. (1978) and Takeda and Hizukuri (1982) reported 

the phosphate monoesters of potato amylopectin are located mostly in B-chains and are 

located more than nine glucose units away from the branch points. The phosphate 

monoesters are located in the inner sections of the B-chains (33%) and in the outer sections 

of B-chains and A-chains of amylopectin (Takeda and Hizukuri 1982). The phosphorous 

content and form are affected by many factors including, growing condition, temperature, and 

storage (Hizukuri et al. 1970, Nielsen et al. 1994, Muhrbeck and Tellier 1991). The 

phosphate monoesters on amylopectins greatly influence the properties of starch. The 

gelatinization and pasting temperatures are decreased, whereas the paste, gel clarity, and gel 

stability are increased due to charge repulsion of the phosphate groups in (Galliard and 

Bowler 1987). 

Gelatmization and Retrogradation 

Starch granules are insoluble in cold water but swell reversibly to a limited extent 

through hydrogen bonding. With additional heat, the granules continue to swell. As the 
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temperature is increased, the thermal energy overcomes the inter- and intra-molecuiar 

hydrogen bonds and hydrophobic interactions, resulting in irreversible disnqrtion of granular 

order. In the gelatinization process, the point at which the native crystalline regions are 

melted, birefringence is lost (French 1984). Continued heating will result in a colloidal 

solution. Generally, the gelatinization of starch granules occurs over a temperature range that 

differs for each starch type. Examples include; normal maize, 64.4 to 80.4°C; waxy maize, 

64.2 to 80.4®C; and normal potato, 59-68°C (Jane et al. 1997). Gelatinization temperatures 

of starch are affected by granule size (Banks and Greenwood 1975), degree of crystallinity 

(Zobel, 1984), relative amounts of amylose and amylopectin (Inouchi 1983), presence of 

phosphorous derivatives (Lim and Seib 1993), lipids (Morrison 1988) and the amylopectin 

branch-chain length (Kasemsuwan and Jane 1995). 

Pasting follows gelatinization and was defined by Atwell et al. (1988) as "the 

phenomenon following gelatinization in the dissolution of starch. It involves the granular 

swelling, extrudation of molecular components from the granule and eventually total 

disruption of the granules." In both food and industrial applications, pasting is an extremely 

important attribute of the frmctionality of starch. Starch pastes are extensively used as 

thickeners, stabilizers and binders. Paste viscosity of starch, as measured by Brabender 

Visco-amylograph or Rapid Visco Analzer, is often used as a critical acceptance 

measurement in quality control processes by both starch manufacturers and end-use 

industries. 
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With cooling, the solution of gelatinized and dispersed starch will form a gel at 

concentrations above 6% solids. Starch gels are generally regarded as composites of swollen 

gelatinized granular remnants of amylopectin radsdng in three dimensional amylose gel 

network (Miles et al. 1985). With storage, molecular rearrangement, known as 

retrogradation, of amylose occiirs. Atwell et al. (1988) defmed retrogradation as the process 

of reassociation of gelatinized starch molecules into an ordered structure. Retrogradation is 

more prevalent in amylose due to its linear structure having a greater tendency to align and 

reassociate as compared to amylopectin. Long-term retrogradation, as with bread staling, is 

primarily caused by amylopectin branches (Schoch and French 1947, D'Appolonia and 

Morad 1981). 

Modificatioii of Starches 

Native starches have great application in food and industrial applications. However, 

starches may be modified to give products with unique and/or improved flmctionality, thus 

increasing their utility. Three general methods of modification are currently used to improve 

starch flmctionality: genetic modification, chemical modification, and physical modification. 

Genetic modification 

Genetic modification though traditional cross-breeding or by transgenic processes can 

produce starches with unique compositions and molecular structures. Genetic mutants of the 

cereal starches are well known and have been studied extensively. Maize, barley, rice. 
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sorghum, amaranth, and Mdieat are all knovm to have waxy, or 100% amylopectin varieties 

(Shannon and Garwood 1984, Watson 1984, Robyt 1998). High-amylose varieties are 

known for maize and barley. Maize mutants have been screened and studied extensively. 

Mutation of protein production in maize can affect physical characteristics, such as hardness 

and opaqueness of the endosperm, and can change the protein type. Mutation in maize can 

affect amylose and amylopectin ratios, branching structure, branch chain length, and amount 

of intermediate component Currently, waxy potato starch is the only root or tuber mutant 

known (Kortstee et al. 1997). Genetic modifications to starch offer many advantages over 

normal starches in terms of utility, fimctionality, and consxmier acceptance. 

Chemical modification 

Chemical modification has been used for many years to overcome the fimctional 

limitations of native starches. Chemically modified starches include acid thinned starches, 

oxidized starches, derivatized starches, and cross-linked starches. Acid-modified starches 

(thin boiling starches), which are produced by limited acid hydrolysis of starch, have 

applications in candy manufacturing, textile sizing, paper coatings, and wall board industries. 

Oxidized starches are produced by the action of oxidizing agents, such as hydrogen peroxide 

or peracetic acid on starch, and introduces carboxyl and carbonyl groups and cleaves 

glycosidic linkages while retaining granular birefiingence and increasing whiteness (Mellies 

et al. 1961, Wurzburg 1986). Oxidized starches are mainly used as wet-end additives in the 

paper-making industry (Mentzer 1986) and as textile sizings (Kirby 1986). Derivatized 
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starches are those starches onto which a substituent group is placed. Examples include, 

phosphorylated starches, acetylated and succinylated starches, and ethylated and 

hydroxypropylated starches. The addition of covalent phosphate groups to cereal starches 

gives them similar properties to potato starch. Phosphorylation of starches increases paste 

clarity and viscosity, and imparts freeze-thaw stability (Solarek 1986). Phosphorylated 

starches are widely iised in paper manufacturing, corrugating adhesives, textile warp sizings, 

and numerous food applications. Hydroxypropylated starches produced by reaction with 

propylene oxide have improved cold storage stability, fieeze-thaw stability, cold water 

swelling, paste clarity (TuschofF 1986). Hydroxypropylated starches are used mainly as 

thickeners in refrigerated or frozen low-acid food systems. 

Cross-linked starches are prepared by several methods. Cross-linking produces 

diester bridges between molecules, increasing the average molecular weight and reinforcing 

the granule during processing. The cross-linking process also produces monophosphates. 

Physical properties, such as viscosity and swelling power, are used for determining the 

degree of cross-linking as it is di£5cult to monitor otherwise (Hullinger 1967, Rutenburg and 

Solarek 1984, Wurzburg 1986). The ratio of diester to monoester derivative can be 

controlled by the pH of reaction. At high pH the cross-linking reaction is predominant 

whereas at low pH the monoester is favored (Patten et al 1969, Rogols and Salter 1979). 

Cross-linking of starches improves acid and enzyme stability, and shear resistance (Hullinger 

1967, Hood et al. 1974, Abraham 1974). Cross-linked starches are widely used to provide 

stable, high-viscosity pastes in processed foods where stability to high pH, thermal extremes. 
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and shear (Whistler and Daniel 1984). In practice, one modification may not achieve the 

characteristics needed in a starch. In such cases a second modification is often used to obtain 

an appropriate product (TuschofT 1986). 

Extrusion modification 

Physical modification of starch includes pre-gelatinization and extrusion processing. 

Methods for pre-gelatinization of starch include drum drying, spray drying, alcoholic-alkaline 

treatment, pressurization, and extrusion. Pre-gelatinized starches are used in instant foods 

such as pudding where a cold swelling starch is needed to impart viscosity to the product. 

Physically modified starches, like genetically modified starches, are advantageous in that 

little or no chemical modification may be needed to give the desired physical property. 

Extrusion cooking is useful for processing starch and starch based-food products. 

Extrusion processing is used extensively in the production of ready-to-eat breakfast cereals, 

snack foods, pet foods, and confectionery products. Extrusion processing of starch involves 

the starch being conveyed, heated, sheared or mixed, and pressurized during processing. This 

results in significant chemical, physical, and functional changes to the starch prior to 

discharge through the die (Harper 1992). Cooking extruders typically consist of a 

segmented, heated barrel though which one or two flighted screws are rotated by an electric 

motor. The flights on the screws fill with starch and convey the feedstock material from the 

feed port to the die. The heat and pressure generated facilitates temperatures above 100°C 

without the production of steam and subsequent loss of moisture. At elevated temperatures 
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and pressuies starch is rapidly gelatinized. In extrusion processing, the screws perform foiir 

fimctions; conveying, mixing, heating, and pressurizing (Harper 1989). Mixing or kneading 

elements are often inserted to dissipate mechanical energy by mixing the product (Harper 

1992, Chang and Halek 1991). In the extrusion process, starch is fed into the screws and 

progressively compressed into a dense solid material (Colonna et al. 1984). The starch loses 

crystallinity during heating, shearing, and pressurizing and is transformed into a hot 

amorphous mass (Colonna et al. 1989). At low moistures and low mechanical energy inputs, 

starch granules are deformed, whereas at higher temperatures the granules are totally 

disrupted (Mercier et al. 1979, Guy and Home 1988). However at high moisture content, low 

temperature and low mechanical energy input starch granules can remain relatively intact 

(Richmond and Smith 1985). During extrusion, starch can experience substantial molecular 

degradation. Intrinsic viscosity and size exclusion chromatography have shown extrusion at 

low moisture and high shear to cause the most molecular degradation in native starches 

(Mercier 1977, Colonna et al. 1984, Diosady 1985, Colonna et al. 1989, Jackson et al. 1990, 

Wasserman and Timpa 1991, Rodis et al. 1993, Politz et al. 1994). Extrusion of starch has 

been shown to yield large fragments instead of small molecules, which suggests the mode of 

degradation is random chain cleavage, with amylopectin being more susceptible than 

amylose (Diosady 1986, Colonna et al. 1989). For extrusion processed starches, properties 

such as water solubility, absorption, paste viscosity, expansion, and density of the final 

product, can be altered based upon processing variables. The high temperatures and pressures 

used in extrusion processing of starches are beneficial in reactive extrusion to produce 
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derivatized, grafted, and hydrolyzed products (Carr et al. 1992, Chang and Lii 1992, Ginunler 

and Meuser 1994, Wang et al. 1997). 

Applications of Starch in Foods 

Starches play major roles in the physical properties of foods. In food systems they 

function as thickeners, binders, coatings, water holders, and stabilizers. The textural 

attributes of food products such as cook-up and instant puddings and sauces are based almost 

entirely on starches. Starches may be used in their native state or may be chemically or 

physically modified. Processed foods require many characteristics such as low pH stability, 

viscosity stability, processing tolerance, shelf stability, and good surface appearance. 

Production of high acid, shelf-stable, frozen, refrigerated, retorted, or asceptically packed 

foods requires selection of at least one starch. Selection and use of starches in food products 

require basic knowledge of food processing and starch properties (Moore et al. 1984). 

Therefore, the study of starch and its molecular structures and fimctional relationships is 

important The combination of genetic modification of starches and understanding of starch 

molecular structures give direction to breeders and starch producers and processors. Today, 

there is growing interest in natural starches with unique properties for use in foods to avoid a 

'̂ ood starch modified" label statement 
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COMPARISON OF WAXY POTATO WITH OTHER ROOT AND TUBER 
STARCHES 

A paper accepted by Carbohydrate Polymers. 

A. E. McPherson and J. Jane 

ABSTRACT 

The physicochemical properties of normal potato, waxy potato, yam and sweet potato 

starches were examined and compared. Normal potato and waxy potato starches displayed 

the B-type x-ray difi&action pattern, whereas yam and sweet potato displayed the C^- and C-

type, respectively. X-ray diffraction patterns of Naegeli dextrins of normal potato and waxy 

potato remained the B-type, but those of yam and sweet potato changed to the A-type. '̂P-

NMR showed the phosphorus contents of the starches to be primarily phosphate monoesters 

with no detectable phospholipid in any of the four starches. The chain-length distributions of 

debranched amylopectins of the starches were analyzed using high performance anion-

exchange chromatography equipped with a post-column amyloglucosidase reactor and a 

pulsed amperometric detector. Normal potato and waxy potato starches displayed lower 

proportions (13 and 14.8%, respectively) of short branch chains of chain length dp 6-12 than 

did yam and sweet potato starches (17.1 and 19.0%, respectively). Normal potato displayed a 

larger proportion of long branch chains than did waxy potato amylopectin. The average 

amylopectin branch chain lengths of normal potato, waxy potato, yam and sweet potato 

starches were dp 28.6, 25.8,25.8 and 26.3, respectively. The Naegeli dextrins of all four 

starches displayed linear and singly branched chains but no multiply branched chains. The 
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Naegeli dextrins of normal potato, waxy potato, yam, and sweet potato starches displayed 

ratios of branched to linear branch chains of0.31,0.36, 0.42 and 0.51, respectively. The 

absolute amylose contents of the four starches were normal potato, 18.3%; waxy potato, 0%; 

yam, 17.7%; and sweet potato, 22.8%. 

INTRODUCTION 

Normal potato starch is widely used in food and industrial applications and is 

economically important in the United States and Europe (Mitch, 1984). Normal potato starch 

has been well-studied and is known to give a B-type x-ray diffraction pattern. Waxy potato 

starch is a recently developed potato mutant that is devoid of amylose content and has not 

been extensively studied. Sweet potato starch is widely used in Asia in a variety of food and 

industrial applications (Tian et ai, 1991). Yam starch is used in parts of A£ica for food and 

limited industrial applications (Coursey, 1967; Emiola and DeLarosa, 1981). Sweet potato 

starch has been reported to be of the A-, C^- and C-type x-ray dif&action pattem (Watanabe 

etai, 1982; Takedaef a/., 1986; Hanashiro era/., 1996). The x-ray diffraction pattem for 

many starches is affected by sample preparation (Nara et al., 1978) and by growth conditions 

and maturity of the parent plant at the time of harvest (Sugimoto et al., 1987; Noda et ai, 

1995). These effects may be more profound in C-type starches because they are reported to 

be a mixture of A- and B-type crystalline polymorphs (Wu and Sarko, 1978; Watanbe et al., 

1982; Zobel, 1988). 
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Average branch chain lengths of amylopectins are highly correlated to the crystalline 

polymorphs observed in the native starch (Hizukuri, 1985). A-type starches contain shorter 

average branch chain lengths of amylopectins, whereas B-type starches contain longer 

average branch chain lengths (Hizukuri et cd.^ 1983; Hizukuri, 1985; Hanashiro et al., 1996). 

C-type starches contain amylopectins with both long and short branch-chain lengths. 

Recently, Hanashiro et al., (1996) investigated the branch chain distributions of a niunber of 

starches by use of high performance anion exchange chromatography with pulsed 

amperometric detection. The authors examined starches of the A-, B-, and C-types and 

divided the proportions of branch chains into DP 6-12, 13-24,25-36 and > 37. 

In this study, we investigated chemical structures, including apparent and absolute 

amylose contents, amylopectin branch chain lengths and distributions, phosphate contents, 

Naegeli dextrin structures and physical properties including x-ray dif&action patterns, 

gelatinization and retrogradation properties. The results helped us understand how chemical 

structures affect the properties of starch. 

MATERIALS AND METHODS 

Normal potato starch was purchased from Sigma Chemical Corp. (St Louis, MO, 

USA). Waxy potato starch was a gift from Lykkeby Stakelsen Food and Fiber AB, Lykkeby, 

Sweden. Yams (Dioscorea) and sweet potatoes (Ipomoea) were purchased from local 

markets, and their starches were isolated following the method of DeWilligen (1964). 
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Scanning Electron Microscopy 

Scanning electron microscopy was performed by the method of Jane et cd., (1994). 

Starches were suspended in absolute methanol, and a drop of the suspension was placed on 

silver tape, sticky side down, attached to a brass disk and sputter coated with gold/palladiimi 

(60/40). The mounted specimens were observed using a scanning electron microscope 

(JEOL model 1850, Tokyo, Japan). 

X-Ray Diffraction Patterns 

The x-ray patterns of the starches and their NaegeU dextrins were obtained with 

copper, nickel foil filtered, Ka radiation using a diffractometer (D-SOO Siemens, Madison, 

WI, USA) following the method of Jane et aL, (1997). The difBractometer was operated at 27 

mA and 50 kV. The scanning region of the dif&action angle (20) was fix)m 4 to 40 at 0.05 

step size with a count time of 2 s. Starch and Naegeli dextrins were equilibrated at 100% 

relative humidity for 24 h at 25°C prior to examination. 

Phosphorus Content 

Total phosphorus contents were determined chemically by the method of Smith and 

Caruso (1964). Samples were examined in triplicate. Structures and quantities of 

phosphorus derivatives also were determined with '̂P-nuclear magnetic resonance (NMR) 

following the method of Kasemsuwan and Jane (1996). 
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Preparation of Naegeli Dextrins 

Naegeli dextrins were prepared folloiwing the method of Umeki and Kainiima (1981). 

The starch (20 g, dry starch basis(dsb)) was suspended in IS.3% (vol/vol) H2SO4 and held at 

38°C in an incubator. Starch suspensions were shaken daily by hand. Samples were taken on 

days 3,6,9 and 12, and the supernatant was siphoned off. An aliquot of the supernatant was 

analyzed for total carbohydrate content to calculate the percent^e starch hydrolyzed (Dubois 

et al., 1956). The starch residues were washed with water until the washings reached pH 7. 

The samples then were dehydrated with absoliite ethanol and dried at 30''C. Naegeli dextrins 

of normal potato starch also were prepared at 25*^C for 3 mo. by the method of Kainuma and 

French (1971). 

Molecular Size Distribution by Gel Permeation Chromatography 

An aliquot (5 ml) containing 15 mg starch with a glucose marker (0.5 mg) was 

injected into a column (2.6 cm, I.D. x 80 cm) packed with Sepharose CL-2B gel (Pharmacia, 

Inc., Piscataway, NJ, USA). Distilled and deionized water containing 10 mM NaOH and 50 

mM NaCl was used to eliite the sample in an ascending direction at 30 ml/h flow rate. 

Fractions of 4.8 ml were collected and analyzed using an Autoanalyzer II (Technicon 

Instrument Corp, Elmsford, NY, USA). The total carbohydrate by anthrone-sulfiiric acid 

reaction and amylose-iodine blue value were measured at 630 and 640 nm, respectively (Jane 

and Chen, 1992). The blue value was used to identify the locations of the amylose and 

amylopectin in the chromatograms. 
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Amylose Contents 

Apparent amylose contents were determined by measuring-iodine affinities of 

defatted starches by use of a potentiometric autotitrator with Metrodata recordii^ software 

(702 SM Titrino, Brinkman Instrument, Westbury, NY, USA). The analysis was based on 

Schoch^s method (1964). Iodine affinities were measured in triplicate. Amylose was 

separated from amylopectin by the methods of Schoch (1942) and Jane and Chen (1992). 

The amylopectin fraction was purified by recrystallization five times. The iodine afBnities of 

purified amylopectins were also determined and then were used to correct the overestimation 

of amylose content (Takeda and Hizukuri, 1983; Kasemsuwan et al., 1995). Absolute 

amylose contents were assessed by subtracting the iodine afSnity of amylopectin from that of 

the defatted starch (Kasemsuwan et al., 1995). 

Chain-Length Analysis by Anion-Elxchange Chromatography 

Isolated amylopectins and Naegeli dextrins were subjected to enzymatic debranching 

by isoamylase following the method of Jane and Chen (1992). Chain-length distributions of 

the debranched amylopectins, the Naegeli dextrins and debranched Naegeli dextrins were 

quantitatively analyzed using a high-performance anion-exchange chromatograph equipped 

with a post colimin amyloglucosidase reactor and a pulsed amperometric detector (HPAEC-

ENZ-PAD) (Wong and Jane, 1997). A mixture of homologous maltodextrins (dp 1-7) that 

contained equivalent concentrations (0.1 mg/ml) of each sugar was used to monitor the 

activity of the enzyme reactor and to calibrate the eluting volumes of the maltodextrins. The 
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separation of a sample (25 jil, 1 mg/ml) with the system employed a PA-100 anion-exchange 

analytical column and a PA-100 guard column (Dionoc, Sunnyvale, CA, USA) with a 

gradient composed of eluent A (100 mM NaOH) and eluent B (100 mM NaOH, 300 mM 

NaNOs) at a flow rate of 0.5 ml/min. The separation gradient was: 0-5 min, 99% A and 1% 

B; 5-30 min, linear gradient to 8% B; 30-150 min, linear gradient to 30% B; 150-200 min, 

linear gradient to 45% B. 

Thermal Properties of Starches Determined by Differential Scanning Calorimetry 

Thermal properties of the starches were analyzed using a differential scanning 

calorimeter (DSC) (Perkin Elmer DSC-7) equipped with an Intracooler II System and Pyris 

thermal analysis software (Perkin-Elmer Corp., Norwalk, CT, USA). Starch and water 

suspensions (1:3) were sealed in aluminum pans and equilibrated at room temperature for 2 

h before analysis. An empty aluminum pan was used as the reference. The samples were 

heated at 10®C/min over a temperature range of 25 to 100°C. Indium and naphthyl ethyl 

ether were used as reference standards. The gelatinization temperature and enthalpy change 

were determined following the procedure of Jane and Chen (1992). Enthalpy change (AH), 

onset temperature, (TJ, peak temperature (Tp) and conclusion temperature (TJ were 

recorded. The analysis of the retrograded starches was done using the same method with the 

gelatinized samples having been stored at 4''C for 7 d. The data were calculated from at least 

three replications. 
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Pasting Properties 

Pasting properties of starches (8% dsb; 30 g total weight) were determined by using a 

Rapid ViscoAnalyzer-4 RVA-4 (Newport Scientific Pty. Ltd., Wafriewcod, NSW, Australia). 

A heating profile was programmed as follows: 1 min at SO°C, heat to 9S°C at 6°C/min, hold 

for 5 min and cool to 50°C at 6°Cymin. The rotating speed of the paddle was kept at 160 ipm 

throughout the measurement 

RESULTS AND DISCUSSION 

Scanning electron micrographs of the four starches are shown in Fig. 1. Normal 

potato and waxy potato starches both showed large, rounded or oval granular shapes with 

axial diameters of 12-70 jim and 12-37 jim for normal potato and 12-72 |im and 14-44 ^un 

for waxy potato starch. Yam and sweet potato starches had angul^ granules with diameters 

of 4-20 and 4-15 |im, respectively. The results were consistent with those reported by Jane et 

al, (1994). The presence of angular granule features may indicate the presence of compound 

starch granules as reported by Shannon and Garwood (1984) for sweet potato. 

X-ray dif&action patterns of the four starches are shown in Fig. 2. Normal potato and 

waxy potato starches both gave B-tjrpe x-ray diffraction patterns, whereas yam starch gave a 

^A-type and sweet potato starch gave a C-type pattem. The x-ray diffraction patterns of the 

Naegeli dextrins of the starches after l2-days of acid hydrolysis are shown in Fig. 3. Naegeli 

dextrins of nomial potato and waxy potato retained the same type x-ray diffraction pattem as 

their respective native parent starches with increased peak intensity, as previously reported by 
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Kainuma and French (1971) and Jane et al., (1997). Whereas, the x-ray dif&action patterns 

of the 12-day Naegeli dextrins of yam and sweet potato displayed pronovmced A-type 

characteristics (Fig. 3). Because the C-polymorph is a combination of the A- and B-

polymorphs, the results suggest that the B-polymorph of the starches is preferentially 

hydrolyzed. Bogracheva et al (1998) have reported that C-type pea starch has both the A-

and B-polymorphs present in a single granule and the B-polymorph being at the hilum and 

the A-polymorph at the periphery. We also observed that more birefringence was retained at 

the periphery of acid treated starch granules. More studies are needed to reveal if the B-

polymorph is located at the hilum of the sweet potato and yam starches and is hydrolyzed 

during the acid treatment 

Phosphorus contents of the starches are shown in Table 1. Both normal potato and 

waxy potato starches contained more phosphorus than yam and sweet potato starches. '̂P-

NMR spectra showed the majority of the phosphorus in the starches was phosphate 

monoester with minor amoimts as inorganic phosphate (Table 1), which was in agreement 

with those reported in the literature (Muhrbeck and Eliasson, 1991; Muhrbeck and Tellier, 

1991; Lim and Seib, 1993; Bay-Smidt et al., 1994; Lim et al., 1994; Kasemsuwan and Jane, 

1996). None of these tuber and root starches contained phospholipids. The Naegeli dextrin 

of potato starch prepared by acid hydrolysis at 25°C for 3 mo retained 65.1% of the total 

phosphorus and 45.2% of the original carbohydrate of the native starch. '̂P-NMR spectra of 

potato starch and potato Naegeli dextrin, in aqueous solutions, showed that the structures of 

phosphate monoesters were preserved (5 4.08 and 5 4.25 ppm for C-6 phosphate and 5 4.70 
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ppm for C-3 phosphate) as shown in Fig 4. A small peak of free glucose 6-phosphate (5 4.97 

ppm), generated during acid hydrolysis, appeared in the spectra of the Naegeii dextrin. These 

results were consistent with the phosphate monoesters being present on amylopectin long B-

chains at least nine glucose residues away from a-1,6 branch points (Takeda and Hizukuri, 

1982) and located within the crystalline region (Muhrbeck and Eliasson, 1991; Muhrbeck et 

al.y 1991). Thus, the phosphate monoesters were protected from acid hydrolysis. 

Iodine titration of the defatted starch showed that normal potato starch contained 

more apparent amylose (37.8%) than sweet potato starch (33.1%), yam starch (29.2%) and 

waxy potato starch (19.4%) (Table 2). The apparent amylose content of sweet potato starch 

has been reported to range from 28 to 38% (Martin and Deshpande, 1985), and that of yam 

starch from 21.6 to 25.4% (Emiola and Delarosa, 1981) and 22% (Suzuki et ai. 1986). After 

subtraction of the iodine afBnities of the amylopectins from those of the whole starches the 

absolute amylose contents were normal potato, 18.3%; waxy potato, 0%; sweet potato, 

22.8%; and yam, 17.7% (Table 2). Molecular size distributions of the starches determined by 

gel permeation chromatography confirmed that waxy potato starch contained no amylose 

(Fig. 5). The proportions of amylose to amylopectin, calculated by the total carbohydrate in 

each peak, arbitrarily cut at the minimum points of both blue value and total carbohydrate, 

showed the amylose fraction of normal potato starch, 27.3%; yam starch, 25.0%; and sweet 

potato starch, 21.1%. The differences between these and the absolute amylose contents 

obtained by iodine titration may be attributed to amylopectin of smaller molecular weight 

present in the second peak. The molecular weight distributions also showed normal potato 
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Starch to have amylose of larger molecular weight than that of yam and sweet potato starches. 

The ratios of blue value to total carbohydrate peak intensities showed the amyiopectins of 

normal potato and waxy potato starches developed less blue color than yam and sweet potato 

amyiopectins, which may be attributed to the interference of phosphate monoesters. 

The normalized branch chain length distributions of debranched amyiopectins of the 

starches are shown in Fig. 6. The first peak in the bimodal peak distribution had a peak chain 

length of dp 14 for normal potato and waxy potato starches and dp 13 for the yam and sweet 

potato starches, while the second peak varied from chain length of dp 48 to 52 for all four 

starches (Table 3). Among the four starches, normal potato had the largest average chain 

length of dp 28.6. Sweet potato had an average chain length of dp 26.3, and yam and waxy 

potato both had an average chain length of dp 25.8. The yam and sweet potato amyiopectins 

had larger proportions (19.09 and 17.05%, respectively) of short branch chains (dp 6-12), in 

comparison to normal and waxy potato amyiopectins (13.07 and 14.75%, respectively) 

(Table 3). This result was consistent with that reported by Takedaef a/., (1986). Normal 

potato amylopectin had a larger proportion (28.5%) of long branches (dp > 37) than did waxy 

potato (22.43%), yam (21.80%) and sweet potato (23.44%) (Table 3). All four starches had 

maximum detectable chain lengths at dp 85. These results are in agreement with previous 

work that B-type starches have longer branch chains than do A- and C-type starches 

(Hizukuri, 1985). 

Acid hydrolysis rates of the starches differed (Fig. 7). After 6 d waxy potato starch 

had a higher extent of hydrolysis than did normal potato, yam and sweet potato starches (Fig. 
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7). HPAEC-ENZ-PAD chromatograms of the Naegeli dextiins after 12 d hydrolysis showed 

a peak length at dp IS (65.0 min retention time) for the normal and waxy potato 

starches and dp 16 (66.4 min retention time) for the yam and sweet potato starches. A second 

peak was observed in each chromatogram, which corresponded to singly branched molecules, 

and occurred at dp 25-26 (~100 min retention time) (Fig 8). After isoamylase debranching, 

the singly branched molecules were hydrolyzed to two linear molecules and the second peak 

dis^peared (Fig. 9). The ratios of the peak heights of the branched molecules to those of the 

linear mol^ules were 0.31,0.36,0.42 and 0.52 for normal potato, waxy potato, yam and 

sweet potato Naegeli dextrins, respectively, and indicated that more branch chains were 

present in the Naegeli dextrins of yam and sweet potato starch. These results agreed with the 

models proposed by Jane et al. (1997), in which branch points in A-type starches are 

scattered throughout the amorphous and crystalline regions. Those a 1-6 linkages present in 

the crystalline region were preserved in Naegeli dextrins of A-type starches. The majority of 

branch linkages of B-type starches are clustered in the amorphous regions, which were 

susceptible to acid hydrolysis. Thus, fewer branches were found in the Naegeli dextrins of 

B-type starches. 

Thermal analysis by DSC (Table 4) showed gelatinization onset temperatures to be 

60.8,62.5, 64.6 and 57.9°C for normal potato, waxy potato, yam and sweet potato starches, 

respectively. Phosphate monoesters on amylopectin are known to decrease the gelatinization 

temperatures. Therefore, normal potato and waxy potato starches, despite their long 

amylopectin average branch chain lengths, had low onset gelatinization temperatures because 
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of their large phosphate monoester contents. Yam starch, having a low concentration of 

phosphate monoester on its amylopectin, longer long B chains (peak dp 52) and more 

characteristics of the A-type polymorph, displayed a higher onset gelatinization temperature. 

Sweet potato starch had relatively short B2 chains (peak chain length of dp 48), substantial 

phosphate derivatives (0.020%), more a 1-6 branch linkages in its amylopectin crystalline 

region and a more pronounced shoulder at dp 18-20 indicating a defective crystalline 

structure, which may account for its lower onset gelatinization temperature. Normal potato 

and waxy potato starches had narrower ranges of gelatinization temperatures (8-10°C) than 

did yam and sweet potato starches (13-14®C). Enthalpy changes for the normal potato, waxy 

potato, yam and sweet potato starches were 17.3,18.2, 13.5 and 13.3 J/g, respectively. 

Increasing amylose content decreases the enthalpy change (Inouchi e/a/., 1984). The large 

enthalpy changes in normal potato and waxy potato starches result from long amylopectin 

branch chains packing into large crystallites and waxy potato being composed of only 

amylopectin. The percentages of retrogradation of the four starches were similar. 

Pasting properties of the starches determined by Rapid Visco Analyzer -4 (RVA) are 

shown in Fig. 10. In contrast to most normal and waxy cereal starches, normal potato starch 

displayed a larger peak viscosity than waxy potato starch. This difference between normal 

potato and waxy potato starch was attributed to amylose, which by physically interacting 

with amylopectin, maintained the integri^ of normal potato starch granules and allowed it to 

swell to a greater degree and to achieve a higher pasting peak viscosity than waxy potato 

starch. Without amylose, waxy potato starch granules were rapidly dispersed as the granules 
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imbibed water and swelled, which resulted in a substantially lowo' pasting peak viscosity, 

more rapid shear thinning and less set-back viscosity. The fewer long branch chains and less 

phosphate monoesters also contributed to the lower pasting peak viscosity of waxy potato 

starch. The difference in pasting behavior between normal cereal and potato starches can be 

attributed to starch lipids and phospholipids in normal cereal starches, >^ch complex with 

amylose and long branch-chains of amylopectin, and severely retard swelling and inhibit 

amylose leaching (Larson, 1980). By comparison, waxy cereal starches, which have 

negligible lipid contents, swell r^idly and achieve a higher pasting peak viscosity. Sweet 

potato and yam starches were similar in pasting profiles except that sweet potato had a 

stepwise increase in viscosity. Reasons for this phenomenon are not known and are of 

interest Pasting temperatures were 64.3,64.4, 72.0 and 70.3®C for normal potato, waxy 

potato, yam and sweet potato starches, respectively. The large phosphate monoester contents 

of normal potato and waxy potato starches resulted in the lower pasting temperatures. The 

high amylose content of sweet potato starch might contribute to its lower peak viscosity and 

resistance to shear thinning in comparison to yam. Sweet potato starch showed a final 

viscosity similar to that of normal potato starch, whereas yam and waxy potato were 

somewhat lower. Waxy potato starch gave a jagged pasting profile which was also observed 

for waxy maize starch at a lesser extent This could be results of the highly stringy Qong) 

pastes of the starches. 
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Table 1. Phosphorus contents of starches and potato Naegeli dextrins 

Chemical method^ •"P-NMR method" 
Total phosphorus Total Monoester Inorganic Phospholipid 

(%) phosphorus(%) phosphate phosphate 

Normal potato 0.075 ±0.001 0.075 ±0.006 0.073 ±0.005 0.001 ± 0.001 ND" 
Waxy potato 0.066 ±0.001 0.069 ±0.003 0.069 ±0.003 0.001 ±0.000 ND 
Yam 0.012 ±0.000 0.012 ± 0.005 0.011 ±0.005 0.001 ±0.000 ND 
Sweet potato 

-rrrr—TTTrrrr 
0.020 ± 0.000 0.021 ±0.007 0.020 ±0.007 0.000 ± 0.000 ND 

"Determined by the method of Smith and Caruso (1964). 
''Determined by the method of Kasemsuwan and Jane (1995). 
®ND not detected. 
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Table 2. Percentage of amylose contents and iodine affinity in starches* 

Starch Iodine Affinity of Iodine Affinity of Apparent Amylose Absolute 
Starch** Amylopectin and Content (%) Amylose Content 

Intermediate (%)' 
Component'' 

Normal Potato 7.2 ± 0,3 4.6 ±0.1 37.8 ±1.4 18.3 
Waxy Potato 3.6 ±0.4 3.6 ±0.3 19.2 ±2.0 0 
Yam 5.4 ±0.2 2.7 ±0.3 29.2 ± 0.9 17.7 
Sweet Potato 6.3 ±0.4 2.5 ± 0.4 33.1 ± 1.8 22.8 

'Amylose cpntents were determined by iodine potentiometric titration. The amylose contents were calculated by 
dividing iodine affinity by a factor of 0.20. 

""Iodine affinities were calculated from at least three replications of each sample. 
'Absolute amylose contents were calculated from the following equation; 

C=(IAS-IAap.,C) / [0.19 - (IAap.,C/100)1 
C is the percentage of the real amylose content 
lAs is the iodine affmity of the whole defatted starch 
1AAP+IC IS the iodine affinity of the amylopectin and intermediate componenl. 
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Table 3. Branch chain length (CL) distributions* 

First Second Percent Distribution Maximum 
peak peak DP 6-12 DP 13-24 DP 25-36 DP^37 Average CL Detectable DP 

Normal potato 14 51 13.07 ±0.02 44.3910.05 14.0010.02 28.5410.13 28.6 85 
Waxy potato 14 49 14.7510.02 48.43 10.04 14.3810.10 22.43 10.03 25.8 85 
Yam 13 52 19.0910.01 44.8110.09 14.3210.03 21.8010.05 25.8 85 
Sweet potato 13 48 17.0510.02 48.1010.02 13.5610.02 23.4010.02 26.3 85 

" Results are the means of three replicates from the high performance anion-exchange chromatograph with pulsed amperometric 
detection (Fig. 5). The total relative peak area was used to calculate percent distribution. 
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Table 4. Thermal properties of starch gelatinization for native and retrograded 
starch as determined by differential scanning calorimetry * 

Native starch Retrograded starch 
To" CC)  V m TcTQ AH'=(J/g) V CC)  V CQ VCC)  AH'(J/g) %Retr* 

Normal potato 60.8 ±0.1 65.2 ± 0.0 70.6 ±0.4 17.3 ±0.3 41.1 ±0.3 56.1 ±0.1 66.4 ±0.1 6.9 ±0.5 40.1 
Waxy potato 62.5 ±0.2 66.6 ±0.2 70.2 ±0.4 18.2 ±0.5 38.6 ±0.3 56.0 ±0.2 65.2 ± 0.2 7.8 ± 0.3 42.0 
Yam 64.6 ±0.2 70.9 ±0.3 77.8 ±0.4 13.3 ±0.3 39.2 ±0.1 51.9 ±0.5 61.5 ±0.2 5.0 ±0.1 37.5 
Sweet potato 57.9 ± 0.2 63.1 ±0.1 71.9 ±0.3 13.5 ±0.6 39.9 ±0.3 52.7 ± 0.4 63.2 ±0.4 6.1 ±0.3 44.8 

The values are the averages of at least three replications (mean ± standard deviation) 
Onset temperature. 
Peak temperature. 
Conclusion temperature. 
Gelatinization enthalpy of starch. 
Percent retrogradation (retrograded starch enthalpy/native starch enthalpy) 
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Fig. 1. Scanning electron micrographs of normal potato (A), waxy potato (B), sweet 
potato (C) and yam (D) starch granules. (Bars are 20 and 10 jim for A and B, 
and C and D, respectively. 
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Fig. 2. X-ray diffraction patterns of normal potato (A), waxy potato (B), yam (C) 
and sweet potato (D) starches. 
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Fig. 3. X-ray diffraction patterns of 12-day Naegeli dextnns of normal potato (A), waxy 
potato (B), yam (C), and sweet potato (D). 
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Fig. 4. The '̂P-nucIear magnetic resonance spectra of (A) normal potato starch 
and (B) the Naegeli dextrin of potato starch. 
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Fig. S. Sepharose CL-2B column profiles of normal potato, waxy potato, yam 
and sweet potato starches. 
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Fig. 6. Normalized peak area chromatograms of isoamyiase debranched 
amylopectins of normal potato, waxy potato, yam and sweet potato 
starches produced by using high performance anion exchange 
chromatogr^hy equipped with an on-line amyloglucosidase reactor and 
a pulsed amperometric detector. 
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Fig. 7. Acid hydrolysis rates (153% H2SO4 v/v) of nonnal potato, waxy potato, 
yam and sweet potato starches. 
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Fig. 8. Chromatograms of nonnal potato (A), waxy potato (B), yam (C) and sweet potato (D) 
12-day Naegeli dextrins analyzed by use of high performance anion exchange 
chromatography equipped with an on-line amyloglucosidase reactor and a pulsed 
amperometric detector. Dextrin of dp 15 is elated at 65 min. 
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Fig. 9. Chromatograms of isoamylase debranched normal potato (A), waxy potato (B), yam 
(C) and sweet potato (D) 12-d Naegeli dextrins analyzed by use of high performance 
amon exchange chromatography equipped with an on-line amyloglucosidase reactor 
and a pulsed amperometric detector. Dextrin of dp 15 is eluted at 65 min. 
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Fig. 10. Rapid Visco Analyzer pasting profiles of normal potato, waxy potato, yam 
and sweet potato starches (8% dsb). 
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EFFECTS OF EXTRUSION PARAMETERS ON CROSS-LINKED HYDROXY-
PROPYLATED CORN STARCHES. L PASTING PROPERTIES 

A paper to be submitted to Cereal Chemistry 

A. E. McPherson, T. B. Bailey, and J. Jane 

ABSTRACT 

A series of cross-linked (0,0.014,0.018,0,024, and 0.028% POCI3, dry starch basis) 

hydroxypropylated (8%) com starches were extruded using a Leistritz micro-18 co-rotating 

extruder. Process variables included moisture, barrel temperature, and screw design. 

Differential scanning calorimetry and x-ray diffraction studies showed the level of starch 

crystallinity decreased with increasing severity of extrusion conditions. Pasting properties of 

the extruded starches were examined using a Rapid Visco Analyzer. Pasting prolSles of 

starches extruded at different conditions displayed different hot paste viscosi^ and final 

viscosity. Increasing starch moisture content during extrusion and level of cross-linking 

increased starch viscosity (p<0.0001). Whereas, increasing extrusion temperature and shear 

decreased starch viscosity (p<0.0001). Interactions were found between level of cross-

linking and screw design and between extrusion temperature and starch moisture content 

(p<0.0001). 

INTRODUCTION 

Extrusion is an important method for processing starch and starch-based products 

(Colonna et al 1984, Colonna et al 1989, Harper 1989). Extrusion cooking has been studied 
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for the production of pre-gelatinized, unmodified starches (Anderson et al 1970, Mercier and 

Feillet 1975, Mercier 1977, Gomez and Aguilera 1984, Doublier et al 1986, Chinnaswamy 

and Hanna, 1990, Ryu and Walker 1995). Traditionally, pre-gelatinized starches have been 

produced by drum drying (Powell 1967). Pre-gelatinized starches display an "instant" 

viscosity upon dispersion in water without heating, and their properties are dependent upon 

cooking and drying conditions (Coloima et al 1984) 

The characteristics of extruded native starches are well documented, whereas 

relatively litde is known of extruded chemically modified starches. Extrusion processing is 

used to produce pre-gelatinized starches which have been reported to display different 

pasting properties from those produced via conventional cooking and drum drying (Colorma 

et al 1984, Pan et al 1998). The differences are attributed to varying degrees of 

depolymerization and molecular entanglement resulting from extrusion (Colonna et al 1984, 

Diosady 1986, Harper 1992). 

Extruded starches have been characterized using differential scanning calorimetry 

(DSC), intrinsic viscosity, pasting profiles, and chromatography. When large nimibers of 

samples are generated, however, a rapid method of analysis, such as a Rapid Visco Analyzer 

(RVA) pasting profile, is advantageous and has been used for starch mixtures and extruded 

starches (Walker et al 1988, Deffenbaugh and Walker 1989, Deffenbaugh and Walker 1990, 

Harper 1992, Whalen et al 1997). 

The objectives of this study were to characterize a series of hydroxypropylated (8%) 

and cross-linked (0.0,0.014,0.018,0.024,0.028% POCI3) normal com starches extruded at 
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different conditions using DSC, x-ray dif&action, and RVA pasting profiles. Extrusion 

variables included: screw design of the extruder, starch moisture content, extrusion 

temperature, and level of starch cross-linking. 

MATERIALS AND METHODS 

Normal com starch was obtained from Grain Processing Corporation, Muscatine, LA. 

Chemicals used were reagent grade and were obtained as follows; propylene oxide, Dow 

Chemical Company (Midland, MI); phosphorous oxychloride, FMC (Princeton, NJ); sodium 

chloride, Cargill Salt (Minneapolis, MN); and hydrochloric acid and sodium hydroxide, 

Harcross Chemical Inc. (Kansas City, KS). 

Chemical Modifications of Starch 

Hydroxypropylation: an aqueous slurry of immodified dent com starch was heated to 

40-S0°C with agitation and purged with nitrogen gas. Sodium hydroxide and salt (sodium 

chloride/sodium sulfate) were added to the slurry under vigorous agitation followed by the 

addition of propylene oxide (8%, dry starch basis (dsb)). The reaction was allowed to 

proceed for 16 hr until terminated by pH adjustment to 6.0 (Hjermstad 1967, Tuschoff 1986, 

Rutenberg and Solarek 1984). 

Cross-linking: NaOH (0.5-1.0%, dsb) and phosphorous oxychloride were slowly 

added (0.01-0.03%, dsb) to the agitated slurry (Hullinger 1967, Rutenberg and Solarek 1984, 

Solarek 1986) and the reaction was run for 2 h. The reaction was terminated by adjusting the 
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pH to 5.0-6.0 using hydrochloric acid After pH adjustment, the reaction slurry was 

thoroughly washed to remove salts and reaction by-products. 

Starch Extrusion 

Starch extrusion was carried out using a Leistritz Micro-18 co-rotating extruder 

(American Leistritz Extruder Company, Somerville, NY) with a 30:1 screw length to 

diameter ratio and a 3.175 mm die opening. Extruder screws were designed with an 

increasing number of kneading blocks to impart increasing shear to the extrudates (Fig. 1). 

The extruder barrel was composed of 6 programmable heating zones (Table 1). Starches with 

varying moisture contents were prepared using a Kitchen Aid mixer (Kitchen Aid, St. Joseph, 

MI) and a spray bottle to add water on a weight basis. Mixtures were sealed in polyethylene 

bags and allowed to equilibrate for at least 2 h before extrusion. Starch was fed into the 

extruder at a rate of 1.6 kg/hr. Residence time in the extruder barrels, using dyed starch, were 

49, 56, and 68 s, respectively, for low-, medium-, and high-shear screw designs. 

Extruded starch was collected as continuous strand after torque, barrel temperature, 

and die pressure reached steady state. Upon completion of extrusion, the extrudate strands 

were immediately placed in a lOO'C forced air convection oven and dried for 8 hr. Dried 

extrudates were milled with a hanmier mill, followed by a Udy Cyclone mill (Udy Corp., Ft. 

Collins, CO) and then sieved through a 160 mesh screen. Sieved starches were sealed in 

polyethylene bags and stored imtil analysis. 
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Experimental Design 

The treatment design was a four factor factorial with a total of 162 treatments. Two 

replicates of the 162 treatments were carried out Variables and their levels used as 

treatments are presented in Table I. The experiment was conducted following a split, split 

plot design. Split plot treatments were the moisture and temperature combinations. Screw 

designs were randomly set at low, medixmi, or high and the starches were extruded in random 

order. A single experimental error term was used because the three error terms in the split, 

split plot analysis of the hot paste viscosity and final viscosity were similar. 

Thermal Properties of Starches Determined by DSC 

Thermal properties of the starches were analyzed by using a differential scaiming 

calorimeter (DSC-7, Perkin Elmer Corp., Norwalk, CT) equipped with an Intracooler II 

System and Pyris thermal analysis software (Perkin-Elmer Corp., Norwalk, CT). Starch and 

water mixtures (1:3) were sealed in aluminimi pans and equilibrated at room temperature for 

2 hr before analysis. An empty aluminum pan was used as the reference. The samples were 

heated at 10°C/min over a temperature range of25-100®C. Indium and zinc were used as 

reference standards. The gelatinization temperature and enthalpy change were determined 

following the procedure of Kasemsuwan et al (1995). Enthalpy change (AH), onset 

temperature (To), peak temperature (Tp), and conclusion temperature (TJ were computed. 
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X-Ray Diffraction Patterns 

The x-ray patterns of the starches were obtained with copper, nickel foil filtered, Ka 

radiation xising a dif&actometer (D-SOO Siemens, Madison, WI, USA) following the method 

of Jane et al (1997). The dif&actometer was operated at 27 mA and 50 kV. The scanning 

region of the dif&action angle (20) was from 4° to 40° at a 0.05® step size with a count time 

of 2 sec. Starches were equilibrated at 100% relative humidity for 24 hr at 25"C prior to 

examination. 

Pasting Properties of Extruded Starches 

Pasting profiles of extruded starches were examined using a Rapid Visco Analyzer 

(RVA-4, Newport Scientific, NSW, Australia). Starch suspension (15%, dsb) was prepared 

by weighing milled, extruded starch (4.50 g, dsb) into a RVA canister and adjusting the total 

weight to 30g with distilled water. A manual premixing step with a spatula was required for 

the pre-gelatinized starch samples to ensure homogeneity of the sample mixture. After 

premixing, the starch paste was removed from the spatula with the RVA paddle. The heating 

profile was run as follows: hold at 30®C for 1 min, heat to 95®C at 6.5°C/min, hold at 95®C 

for 5.5 min, cool to 50°C at 6®C/min, and hold at 50®C for 2 min. Paddle speed was set at 

960 rpm for the first 5 sec and then 160 rpm for the remainder of the analysis. Viscosity 

values were collected after holding at 95°C, at 16 min (hot paste), and cooling to 50®C, at 26 

min (final). 
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RESULTS AND DISCUSSION 

The onset gelatinization temperature and enthalpy change of native com starch 

determined by DSC were 66.1®C and 13.2 J/g, respectively. The hydroxypropylated (8%) 

maize starches with cross-linking levels of0,0.014, 0.018,0.024, and 0.028% POCI3, had 

onset gelatinization temperatures of 50.6,52.6,50.6, 51.9, and 50.8°C, and enthalpy changes 

of 6.5,9.2, 8.5, 8.1, and 8.3 J/g, respectively (Table II). The decreased gelatinization 

temperatures and enthalpy changes of the chemically modified starches from that of the 

native com starch indicated the crystalline stmcture of the native starch granules was 

destabilized and possibly reduced during the cross-linking and hydroxypropylation reactions 

at alkaline pH (Table n). DSC thermograms of extmded starches showed those extruded at 

60 and 80°C displayed a smaller gelatinization endotherm than their respective unextmded 

counterparts. The onset gelatinization temperatures of the extmded starches generally were 

somewhat higher than those of the parent starches (Table II). The magnitude of the enthalpy 

change decreased when the extrusion temperature increased. Increased onset gelatinization 

temperatures of the extmded starches indicated that starch granules with lower gelatinization 

temperatures (such as dams^ed starches) were gelatinized during extrusion; those with higher 

gelatinization temperatures were more resistant to extmsion. Annealing of remaining 

crystalline material during dr3dng may have contributed to the increased gelatinization 

temperatures of the extmded starches. Starches subjected to higher extrusion temperatures 
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(100°C) showed no gelatinization peak, indicating total gelatinization of the starch dnring 

high-temperature extrusioiL 

The x-ray diffraction patterns of the extruded starches showed that crystallinity 

decreased as the temperature of extrusion increased. Native com starch displayed an A-type 

x-ray diffraction pattern (Fig. 2). Native com starch extmded at 30% moisture and high shear 

at 60°C displayed reduced crystallinity. At extrusion temperatures of 80°C and 100°C the 

starch was gelatinized as indicated by the absence of crystalline peaks (Fig. 2). X-ray 

diffraction patterns of extmded hydroxypropylated and cross-linked hydroxypropylated 

starches showed similar decreases in crystallinity as extrusion temperature increased (data not 

shown). DSC showed a small thermal transition peak for the native com starch extruded at 

80°C, whereas x-ray analysis showed no diffraction pattern. It is possible that the remaining 

crystallites were too small to display an x-ray diffraction pattem. The x-ray pattern of the 

native com starch extruded at 1 OO^C displayed a peak at ~20® and a small bumps at 13°, 

indicating a small amoimt of V-type amylose-lipid complexes. 

The pasting profiles of the native and chemically modified starches (8% dsb) are 

shown in Figure 3. The starch pasting temperatures were 76.4, 57.3, 59.1,59.0,59.5, and 

59.9°C for native com starch and cross-linked (0.0,0.014, 0.018, 0.024, and 0.028% POCI3) 

hydroxypropylated (8%) com starches, respectively (Fig. 3). The pasting temperatures of the 

starches increased with increasing level of cross-linking. The final viscosity of the starches 

also increased with increasing level of cross-linking, 98.3, 131.7,253.8,307.4,325.8, and 

380.42 RVU, for native and cross-linked (0.0,0.014,0.018,0.024, and 0.028% POCI3) 
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hydroxypropylated (8%) com starches, respectively (Fig. 3). The pasting peak viscosity 

increased with levels of cross-linking up to 0.018% POCI3. With fiirther increases in cross-

linking level in normal starches, the peak viscosity decreased and the final viscosity increased 

(Fig. 3), which agreed with those reported by Rutenberg and Solarek (1984) and 

Kasemsiiwan and Jane (1994). 

The experimental design for extrusion processing consisted of 2 replications of 162 

treatment combinations that included: screw design (shear), extrusion temperature, starch 

cross-linking level, and starch moisture content Pasting profiles were generated and 

analyzed for all treatment combinations. Because the extruded starches displayed low hot 

paste viscosity and final viscosity, a solids content of 15% (dsb) was used for the pasting 

study, which resulted in reproducible RVA pasting profiles with adeqiiate viscosity levels for 

detection. Most of the extruded starches displayed substantial instant viscosity after stirring 

for 1 min at 30°C, indicating that the starches had been pre-gelatinized by extrusion (Figs. 3 -

7). 

Average hot paste viscosity and final viscosity of extruded starches were calculated 

for each of the treatments and are summarized in Tables HI and IV. Differences between the 

means of the treatments are discussed in terms of significant variables and variable 

interactions. Extruded starches displayed different pasting profiles fiiom their respective 

parent starches (Figs. 3-7). Representative pasting profiles of extruded starches firom various 

treatment combinations are shown in figures 4-7. 
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The extrusion temperature affected the hot paste viscosity and ISnal viscosity of 

extruded starches (Table HI). Figure 4 shows cross-linked (0.028% POCI3) hydroxy-

propylated (8%) com starches extruded at 40% moisture, high shear, and increasing 

temperature (60,80, and 100°C). Starches extmded at low temperature (60°C) displayed a 

lower instant viscosity and higher hot paste and final viscosity than those extruded at 80°C 

and lOO^C. Similar extrusion temperature effects on instant and final viscosities have been 

reported for wheat flour (Seiler et al 1980) and wheat starch (Colonna et al 1984). Cross-

linked (0.028% POCI3) hydroxypropylated (8%) com starch extruded at low temperature 

(60°C) and high moisture (40%) displayed a small pasting peak with a pasting temperature of 

60.0°C (Fig. 4). This small pasting peak occurred at a similar temperature range to the 

pasting peak of the unextruded, parent starch (Fig. 3). Those extruded starches displaying a 

small pasting peak also displayed a DSC gelatinization peak with a reduced enthalpy change 

and residual A-type x-ray diffiaction pattern. These results confirmed the presence of 

remaining crystalline structure in the starches extruded at low temperature (60®C) and were 

in agreement with the scanning electron microscopy results which showed distorted and 

firactured granule residues present in these starches (McPherson and Jane 1999). 

Viscosity of extruded starches decreased as temperature of extrusion increased firom 

60°C to 100°C (Table HI) (p<0.0001) except those extruded at 30% moisture content. The 

increased extrusion temperature gelatinized the starches to a greater extent Pass^e of the 

gelatinized starch through the extruder barrel resulted in shear degradation of the molecitles 

emd subsequent decreases in hot paste and final viscosity (Bhattacharya and Hanna 1987). 
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Viscosity of the extruded starches increased as starch moisture content increased from 30% to 

40% (Table ID) (p<0.0001). An example of the effect of varying moisture content during 

extrusion on starch pasting profiles is shown in Fig. 5, cross-linked ( 0.014% POCI3) 

hydroxypropylated (8%) com starch extruded at 100°C and mediimi shear with moisture 

levels of30,35, and 40% (Fig. 5). Moisture acts as a plasticizer during extrusion of starches 

and lowers the extent of shear degradation (Lai and Kokini 1991). This effect has been 

reported for hot paste and final viscosity in uimiodified wheat starch (Colonna et al 1984, 

Mason and Hoseney 1986) and com starch (Chinnaswamy and Hanna 1990). Amylopectin 

molecular weights of extruded cross-linked hydroxypropylated (8%) starches decreased as 

the moisture content decreased during extrusion (McPherson and Jane 1999). Starch 

extmded with 30% moisture content displayed increased viscosity with increasing 

temperature, which was opposite to those extmded with 35% and 40% moisture (p<0.0001) 

(Table HI). This difference may be attributed to the starch with lower moisture content 

having higher glass transition temperature. Thus, being extmded at higher temperature, the 

starch became mbbery and resulted in less friction and less degradation as supported by SEM 

stmctures reported by McPherson and Jane (1999). 

As the level of starch cross-linking increased, the average viscosity of the chemically 

modified starches increased to a greater degree with extrusion at low shear than did those 

extmded at mediimi and high shear (Table IV) (p<0.0001). In general, the instant, hot paste, 

and final viscosity of starch pastes increased with increasing the level of starch cross-linking 

as shown in Figure 6 for starches extmded at 30% moisture, 100®C, and high shear. Cross-
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linked starches retained more structure ^^dien extruded at low shear which resiilted in greater 

hot paste and final viscosity than did those extruded at medium and high shear. The extruded 

native com starches had higher average viscosity than did the extruded chemically modified 

starches (Table IV). This was caused by the retention of crystalline material in the native 

starch as shown by DSC, x-ray dif&action, and RVA pasting profiles, which was a result of 

native com starch having a higher gelatinization temperaturc (Table II). Level of starch 

cross-linking had a significant effect on the viscosity of the extmded starches (pO.OOOl). As 

the level of starch cross-linking increased fix)m 0.0% POCI3 to 0.028% POCI3 the average 

viscosities of the starches also increased (Table IV) (p<0.0001). This is in agreement with 

the results reported by McPherson and Jane (1999) showing that amylopectin molecular 

weights of extmded hydroxypropylated (8%) starches with cross-linking were higher than 

those without cross-linking. Cross-linking is used to impart shear, acid, and thermal stability 

to starches in various conventional processing applications such as retorting, continuous 

mixing, and pumping (HuUinger 1967, Rutenberg and Solarek 1984). Viscosity of extruded 

starches decreased as the level of shear increased fix)m low to high (Table IV) (p<0.0001). 

Figure 7 shows an example of the effect of shear on cross-linked (0.028% POCI3) 

hydroxj^ropylated (8%) com starch extruded at 100®C and 30% moisture. Similar findings 

have been reported for extmded com grits (Barres et al 1990) and wheat flour (Seiler et al 

1980). 
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CONCLUSIONS 

Extrusion of hydroxypropylated (8%) com starch with varying levels of cross-linking 

(0, 0.014,0.018, 0.024, and 0.028% POCI3) at different levels of moisture, barrel 

temperatiffe, and shear resulted in a range of partially to totally pre-gelatinized starches. 

Differential scaiming calorimetry and x-ray dif&action both showed remaining crystallinity in 

starches extruded at low temperature (60°C). Starch moisture content, extrusion temperature, 

level of starch cross-linking, and screw design were shown to affect pasting characteristics as 

measured by RVA (p<0.0001). Increasing the starch moisture content level and cross-

linking resulted in extruded starches with increased hot paste and final viscosity. The 

interactions between cross-linking level and level of shear and between starch moisture 

content and extrusion temperature were significant 
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Table 1. Experimental variables and levels of use. 

Factor Factor Levels 

Cross-Linking ("/oPOClj) 0 0.014 0.018 0.024 0.028 
Moisture (% dsb) 30 35 40 g 
Screw low medium high 
Temp. Profile of Barrel («C) 40,45,50,55,60,60 45,55,65,75,80,80 60, 70, 80,90,100,100 

feed-> die 
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Table 2. Thennal properties of starch gelatinization of native starches and selected 
extruded starches by differential scanning calorimetry'. 

Starch Moist. Temp Screw Onset 
Cont. (%) {°C) Shear (Tp) 

Peak 
(TG) 

Conclusion Enthalpy 
(Tc) (AH) 

native 
HP 0.0% POCI3 

HP. 0.014% POCI3 
HP. 0.018% POCI3 
HP. 0.024% POCI3 
HP. 0.028% POCI3 

native 

HP. 0.0% POCI3 

HP. 0.028% POCI3 

30 60 
30 80 
30 100 
30 60 
30 80 
30 100 
30 60 
30 80 
30 100 
40 60 
40 80 
40 100 
40 60 
40 80 
40 100 

30 60 
30 80 
30 100 
30 60 
30 80 
40 60 
40 80 
40 60 
40 80 
40 100 

30 60 
30 80 
30 100 
30 60 
30 80 
30 60 
30 80 
35 60 
35 80 
40 60 
40 80 
40 60 
40 80 

low 
low 
low 
med 
med 
med 
hjgh 
high 
h^h 
low 
low 
low 
high 
high 
high 

low 
low 
low 
hjgh 
high 
low 
low 
high 
high 
high 

low 
low 
low 
nfied 
med 
high 
high 
high 
high 
low 
low 
high 
high 

66.1 ± 0.3° 
50.6 ±0.1 
52.6 ±0.1 
50.6 ± 0.2 
51.9 ±0.0 
50.9 ± 0.3 

69.8 ±0.1 
66.4 ± 0.0 

ND 
63.2 ±0.1 
67.9 ±0.2 

ND 
65.5 ± 0.1 
66.7 ±0.4 

ND 
68.2 ± 0.3 
73.3 ±0.4 

ND 
65.2 + 0.1 
71.0 ±0.2 

ND 

70.7 ±0.2 
55.6 ±0.1 
57.4 ±0.2 
56.0 ±0.1 
57.2 ±0.0 
56.5 ±0.3 

73.7 ± 0.2 
70.7 ± 0.0 

69.3 ±0.0 
72.3 ± 0.2 

70.4 ± 0.5 
71.6 ±0.2 

72.2 ± 0.2 
76.9 ± 0.4 

69.8 ±0.2 
74.2 ± 0.2 

75.2 ± 0.3 
62.0 ± 0.2 
63.3 ±0.1 
62.0 ±0.3 
63.3 ± 0.0 
62.8 ±0.1 

77.3 ± 0.5 
73.6 ±0.1 

74.3 ± 0.3 
76.2 ±0.1 

74.5 ± 0.0 
75.6 ± 0.0 

76.2 ± 0.4 
80.3 ± 0.3 

74.0 ± 0.3 
77.5 ± 0.2 

52.9 ± 0.4 58.1 ±0.4 65.0 ±0.5 
66.4 ±0.1 70.7 ±0.2 73.6 ±0.1 

ND 
51.0 + 0.1 56.5 + 0.2 63.5 ± 0.7 

ND 
55.6 + 0.0 60.0 + 0.2 - 64.4 ± 0.7 

ND 
51.2 ± 0.0 56.5 ± 0.2 63.4 ± 0.8 
61.8 ±0.9 65.1 ±0.6 66.7 ±0.9 

ND 

54.4 ± 0.2 59.4 ± 0.6 64.2 ± 0.0 
59.3 ± .0 60.8 ± 0.1 63.2 ± 0.1 

ND 
50.3 ± 0.6 56.1 ±0.1 58.8 ±0.0 

ND 
66.9 ± 0.6 69.0 ± 0.9 71.2 ± 0.3 

ND 
50.7 ± 0.2 56.3 ±0.1 62.2 ±0.3 

ND 
54.7 ± 0.2 60.3 ± 0.7 65.0 ± 0.9 

ND 
52.5 ±0.1 57.3 ± 0.0 62.8 ±0.1 

ND 

13.2 ±0.8 
6.5 ± 0.6 
9.2 ± 0.9 
8.5 ± 0.4 
8.1 ±0.1 
8.3 ±0.3 

1.9 ±0.0 
0.4 ± 0.0 

2.0 ± 0.3 
1.4 ±0.1 

0.9 ±0.2 
1.6 + 0.2 

4.3 ± 0.2 
0.6 ±0.1 

5.3 ± 0.2 
0.9 ± 0.4 

0.9 ±0.1 
0.4 ±0.1 

1.7 + 0.1 

0.3 ± 0.1 

1.7 ±0.0 
0.4 ± 0.2 

0.5 ± 0.0 
0.2 ± 0.0 

0.2 ± 0.0 

0.3 ± 0.1 

0.9 ±0.1 

0.5 ±0.0 

1.8 ±0.2 

Results are the mean of at least three replications 
** ± Standard deviation. 
ND no peak was detected 
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Table 3. Average viscosities (RVU) for combinations of starch moisture content and extrusion 
temperature (Standard error = 12.93). 

Starch Moisture Extrusion Temperature (°C) Starch Moisture 
Content Mean° Content (%) 60 80 100 
Starch Moisture 
Content Mean° 

30 94.61 102.08 104.71 100.20 
35 170.35 160.01 133.79 154.71 
40 267.32 230.42 198.59 232.11 

Extrusion Temp. 177.43 164.14 145.46 
Mean 
" Standard error of the starch moisture content means = 7.46. 
'' Standard error of the extrusion temperature means = 7.46. 
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Table 4. Average viscosities (RVU) for combinations of the level of starch cross-linking and shear (Standard error = 5.08). 

Native % POCU in Cross-Linked and 
Corn Hydroxypropylated (8%) Corn Starches 

Shear Starch 0 0.014 0.018 0.024 0.028 Shear Mean' 
Low 347.24 89.95 167.31 226.52 230.61 299.91 226.92 

Medium 292.14 72.3 97.23 120.51 130.19 174.19 147.76 
High 260.77 56.08 80.23 96.68 101.91 135.69 121.89 

Starch Cross- 300.05 72.78 114.92 147.90 154.24 203.26 
Linking Mean'' 

Standard error of shear means = 2.28. 
Standard error of starch cross-linking means = 2.93. 
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Figure 1, Designs of screws. Number of kneading elements increase from low (A), 
medium (B), to high (C) shear. K denotes sections of kneading blocks. 
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Figure 2. X-ray dif&actioii patterns for native com starch and native com starch 
extruded at 30% moisture and high shear at 60,80, and IOO®C. 
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Rapid Visco Analyzer pasting profiles (15% solids, dsb) of cross-linked 
(0.028% POCI3) hydroxypropylated (8%) com starch extruded at 40% 
moisture and high shear at 60, 80, and 100®C. 
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Figure 5. RaplH visco analyzer pasting profiles (15% solids, dsb) of cross-linked 
(0.014% POCI3) hydroxypropylated (8%) com starch extruded at 100®C 
and medium shear at 30,35, and 40% moisture. 
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Figure 6. Rapid visco anal^er pasting profiles (15% solids, dsb) of native com and 
cross-linked (0,0.014,0.018,0.024, and 0.028% POCI3) hydroxypropylated 
(8%) com starch at 30% moisture, lOO'̂ C, and high shear. 
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Figure 7. Rapid visco analyzer pasting profiles(15% solids, dsb) of cross-linked 
(0.028% POCI3) hydroxypropylated (8%) com starch extruded at 
IOO*'C, 30% moisture at low, medium and high shear. 
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EFFECTS OF EXTRUSION PARAMETERS ON CROSS-LINKED 
HYDROXYPROPYLATED CORN STARCHES, 

n. MORPHOLOGICAL AND MOLECULAR CHARACTERIZATION 

A p^)er to be submitted to Cereal Chemistry 

A.E. McPherson and J. Jane 

ABSTRACT 

A series of cross-linked hydroxypropylated com starches were extruded with a 

Leistritz micro-18 co-rotating extruder. Extrusion process variables including moisture (30, 

35, and 40%), barrel temperature (60,80 and 100°C), and screw design (low, medium, and 

high shear) were investigated. Scanning electron microscopy (SEM) of extruded starches 

showed a gel phase with distorted granules and granule fragments aiter extrusion at 60°C. 

After extrusion at 100°C only a gel phase was observed with no granular structures 

remaining. High performance size exclusion chromatography (HPSEC) equipped with multi-

angle laser light scattering (MALLS) and refractive index (RI) detectors showed extruded 

starches degraded to different extents, depending on extrusion conditions. The average 

o 

molecular weight of the amylopectin of imextruded native com starch was 7.7 x 10 . 

Extrusion at 30% moisture, 100°C, and high shear reduced the molecular weight of 

amylopectin to 1.0 x 10*. Hydroxypropylated normal com starch extruded at identical 

conditions showed greater decreases in amylopectin molecular weight. With the addition of 

cross-linking, the amylopectin fraction of the extmded starches was less degraded than those 

of their native and hydroxypropylated com starch counterparts. Similarly, increasing 
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moisture content during extrusion lowered amylopectin degradation in the extruded starches. 

Increasing temperature during extrusion of cross-linked hydroxypropyiated starches at high 

moisture content (e.g. 40%) lowered amylopectin molecular weights of the extruded starches, 

whereas increasing extrusion temperature at low moisture content (30%) resulted in less 

degraded molecules. This difference was attributed to the higher glass transition 

temperatures of the cross-linked starches. 

INTRODUCTION 

Extrusion has become a common processing method for starch-based foods and for 

producing pre-gelatinized starches (Snyder 1984, Mercier et al 1989, Harper 1992, Linko 

1992, Govindasamy et al 1997). The effects of extrusion on native starches have been well 

studied. Extrusion of native starches has been reported to cause decreases in crystallinity 

(Mercier et al 1979), intrinsic viscosity (Colonna and Mercier 1983, Colonna et al 1984, 

Diosady etal 1985), and paste viscosity (Seiler et al 1980, Coloima et al 1984, Gomez and 

Aguilera 1984, Mason and Hoseney 1986). During the extrusion process thermal energy, 

shear, and pressure cause reductions in molecular size (Mercier 1977, Colonna and Mercier 

1983, Colonna et al 1984, Davidson et al 1984a, Davidson et al 1984b, Diosady et al 1985, 

Jackson et al 1990, Wen et al 1990, Mitchell and Areas 1992). Extrusion variables including 

starch moisture content, barrel and die temperatures, screw design, screw speed, and starch 

type have been shown to affect the molecular weight of extruded starches (Coloima and 
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Mercier 1983, Colonna et al 1984, EKosady et al 1985, Jackson et al 1990, Wen et al 1990, 

Tayeb et al 1992, Politz et al 1994). 

Molecular degradation in extmded native starches has been examined using intrinsic 

viscosity, gel permeation chromatography (GPC), and high performance size exclusion 

chromatography (HPSEC) (Chinnaswamy and Haima 1990, Jackson et al 1990, Wasserman 

and Timpa 1991, Harper 1992, Politz et al 1994). HPSEC, equipped with light scattering 

and refractive index detectors (RI), is a method for determination of absolute molecular 

weight and size of synthetic polymers and biopolymers such as starches (Podzimek 1994, 

Fishman et al 1996, Yokoyama et al 1998). 

In this study, we examined the effects of extrusion variables on granular morphology 

and molectilar weight of the starch components of native and cross-linked (0.0 to 0.028% 

POCI3) hydroxypropylated (8%) com starches. Extrusion variables, including starch 

moisture content, screw design, extrusion temperature, and the level of cross-linking in the 

modified com starches, were investigated. 

MATERIALS AND METHODS 

Preparation of cross-linked (0,0.014,0.024, and 0.028% POCI3) hydroxypropylated 

(8% propylene oxide) starches and extrusion variables (moisture, screw designs, and 

temperature profiles) have been reported elsewhere (McPherson et al 1999). 
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Scanning Electron Microscopy (SEM) 

Extruded starches (0.5 g) were suspended in water (10 ml) and gently agitated at 20°C 

(20 min) to disperse the gelatinized material. A drop of the suspension was placed on a glziss 

slide, spread with a spatula, and examined under light microscopy (Nikon Labophot, Nikon, 

Garden City, NY). The remaining granules were counted in 10 fields and compared to that in 

the respective unextruded parent starch to arrive at an approximate percentage of granules 

remaining after extrusion. A drop of the starch suspension was placed on a glass cover slip, 

spread with a spatula, and allowed to dry. The cover slip was then attached to an aluminum 

stub with double-sided tape and colloidal silver applied between the edge of the cover slip 

and the aluminum stub. The specimens were then sputter coated with gold/palladium 

(60/40). The moimted specimens were observed using a scanning electron microscope 

(JEOL model 1850, Tokyo, Japan) at the Bessey Microscopy Facility, Iowa State University 

(Ames, lA). 

High Performance Size Exclusion Chromatography 

Starch (0.5 g, dsb) was solubilized in dimethyl sulfoxide solution (90%) (50.0 ml) in 

a boiling water bath for 1 h with constant stirring, and continuously stirred for 24 h at room 

temperature. Starch was precipitated from an aliquot of DMSO solution (1.0 ml) with excess 

absolute ethyl alcohol and centrifuged at 6750 x g for 15 min. The precipitated amorphous 

starch pellet, which had been defatted, was resolubilized in deionized water (10 ml, 95°C) 
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and stirred with a magnetic stirrer in a boiling water bath for 30 min. Starch solutions were 

then filtered using a 5.0 pun syringe filter. The filtrate was injected (100^1) into a high 

performance size exclusion chromatography (HPSEC) system. This system consisted of a 

HP 1050 isocratic piunp (Hewlett Packard, Valley Forge, PA), refiactive index (RI) detector 

(model HP1047A, Hewlett Packard, Valley Forge, PA), and multi-angle laser light scattering 

(MALLS) detector (model Dawn F, Wyatt Tech., Santa Barbara, CA) with a helium-neon 

laser light source (A.=632.8 nm) and a K-5 flow cell. The columns used were Shodex OH pak 

KB-G, KB-806, and KB-804 (Shodex Denko, Tokoyo, Japan) HPSEC columns connected in 

series and kept at 55°C. The mobile phase was distilled, deionized, and degassed water 

passed through in-line filters (0.2|i and 0.1|x) in series, at a flowrate of 0.7 ml/min. 

The electronic outputs of the RI and MALLS detectors were collected by ASTRA 

software (version 4.10, Wyatt Tech., Santa Barbara, CA). Peaks were assigned using the RI 

chromatograms. A second order fit in the Berry analysis method (ASTRA) was found to 

have the least statistical error for determination of amylopectin weight average molecular 

weight. Because of the reduced sensitivity of MALLS for small molecular weight species, 

the molecular weight of the peak two (amylose and degraded amylopectin fragments) of 

extruded starches was calculated from the refractive index signal using a calibration curve 

constructed from a series of pullulan molecular weight standards (22.0,47.3, 112.0, 212.0, 

404.0, and 788.0 x 10^ (Viscotek, Houston, TX). 
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Glass Transition Temperature of Starches Determined by DSC 

The glass transition temperature of the extruded starch was analyzed by using a 

differential scanning calorimeter (DSC-7, Peridn Elmer Corp., Norwalk, CT) equipped with 

an Intracooler n System and Pyris thermal analysis software (Perkin-EImer Corp., Norwalk, 

CT). Starch and water mixtures (0.85:0.15 and 0.74:0.26) were prepared in screw capped 

glass vials at 20°C and equilibrated for 48 h. The mixtures were sealed in aluminum pans 

and equilibrated at room temperature for 2 h before analysis. An empty aluminum pan was 

used as the reference. Indium and zinc were used as reference standards. The initial scan 

was made from 25-120°C at 10°C/min followed by cooling to 5°C. The second scan was 

made from 5-120''C at 5''C/min. Moisture content of the starch samples was determined by 

puncturing the sealed pans after scaiming and drying at 100°C for 8 h. The glass transition 

temperature was determined from the midpoint of the baseline shift (Zeleznak and Hoseney 

1987). All samples were examined in triplicate. 

RESULTS AND DISCUSSION 

The scanning electron micrographs (SEM) of native com starch and representative 

extruded starches are shown in fig. 1. Native com starch granules were polyhedric in shape 

and had axial diameters of between 5-20 |a (Fig. la) as has been reported by Jane et al (1994). 

Starches extruded at low temperature (60°C) were found to have relatively small amounts of 

distorted and broken granular fragments. These results agreed with those of differential 

scaiming calorimetry (DSC) and x-ray diffraction patterns of starches extruded at 60°C, 
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which showed remaining crystallinity (McPherson et al 1999). Native com starch extruded at 

40% moisture, 60°C, and low shear (Fig. lb) showed remaining distorted granules and some 

fractured granules (~42 ± 8% granules remained). That extruded at 30% moisture, 60''C, and 

high shear (Fig Ic) showed substantially fractured granules (~21 ± 6% granules remained). 

The hydroxypropylated (8%) com starch extraded at 30% moisture, 60°C, and high shear 

showed residual swollen, distorted and fractured granules (data not shown). The highly 

cross-linked (0.028% POCI3) hydroxypropylated (8%) com starch extruded at 40% moisture, 

eCC, and low shear levels showed disrupted swollen granules (Fig Id) (-14 ± 2% granules 

remained). Extrusion of this starch at 40% moisture, 100°C, and low shear displayed only a 

continuous gel phase with no remaining graniilar structure (Fig. le). All starches showed no 

remaining granular stmcture after extrusion at 100°C. Extrusion of starch at high 

temperatures (>100°C) has been reported to completely destroy granular structure of native 

starches (Mercier et al 1979, Richmond and Smith 1985). 

The HPSEC chromatogram of the unextruded native starch showed two major peaks 

conesponding to amylopectin and amylose, with retention volmnes of 7.6-11.8 and 11.9-

20.7 ml, respectively (Fig. 2). The extruded starches displayed multiple peaks, resulting 

from degradation during extrusion. Degradation has been reported in both the amylopectin 

and amylose fractions of extruded starches (Colonna et al 1984, Wen et al 1990). As a 

consequence, the molecular weight of amylopectin decreased and shifted to higher retention 

volimies. Therefore, the second major peak in the HPSEC chromatograms of the extruded 

starches is referred to as peak two because it is composed of a mixture of amylose and 
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degraded amylopectin molecules. The weight average molecular weights of native com 

amylopectin and amylose were 7.7 x 10* and 5.5 x 10^, respectively (Table I). Previously 

reported molecular weight values for amylopectin and amylose using HPSEC vary with 

sample preparation, SEC columns, mobile phase, and detection systems. The molecular 

weights of com amylopectin and amylose from various sources have been reported to range 

from 1.5 X lO' to 2.27 x 10* and 1.36 to 4.89 x 10^, respectively (Politz et al 1994, Fishman 

et al 1996, Mua and Jackson 1997, Bello-Perez 1998, Yokoyama et al 1998). 

Extrusion of native com starch at 30% moisture and 100®C with increasing shear 

degraded the amylopectin and caused the peak to broaden and shift to higher retention 

voliraies (8.5-12.5 ml) (Fig. 2). Residence time of the starch in the extmder barrel increased 

as shear increased and likely contributed to molecular degradation. The amylopectin 

molectilar weight decreased as shear increased (1.5, 1.1, and 1.0 x 10 for low, medium, and 

high, respectively) (Table I). As a result of increasing shear and degraded amylopectin 

molecules shifting to higher elution volumes (Fig. 2) peak two molecular weight increased 

(5.9, 7.0, and 7.3 x 10^ for low, medium, and high shear, respectively) (Table I) and 

developed a pronounced shoulder at an elution volimie of 13.2 ml (Fig. 2). Increasing 

extrusion temperature of native com starch at 30% moisture decreased the amylopectin 

molecular weight at low shear (3.2,2.6, and 1.5 x 10*, for 60, 80, and 100°C, respectively) 

and high shear (2.6,1.4, and 1.0 x 10®, for 60, 80, and 100°C, respectively) (Table I). 

Increasing extrusion temperature of native com starch also increased peak two molecular 

weight (Table I). Amylopectin peaks of starches extruded at 30% moisture were broad. 



www.manaraa.com

103 

indicating the molecules were severely degraded during extrusion (Table 1 and Fig. 2), 

whereas those extruded at 40% moisture content were less degraded and had a narrower 

molecular weight distribution, close to that of the unextruded com starch amylopectin (Fig. 

3). These results agreed with those of starches extruded at 40% moisture that displayed 

greater viscosity than those extruded at 30% moisture (McPherson et al 1999). For native 

com starch, the greatest degradation of amylopectin occurred with extrusion at high shear, 

30% moisture, and lOCC. This is in agreement with previous findings that the amylopectin 

of extmded com starch is degraded most readily at low moisture and high shear conditions 

(Wen et al 1990, Orford et al 1993, Politz et al 1994, Pan et al 1998). 

Unextmded hydroxypropylated (8%) com starch with no cross-linking displayed 

retention volumes of 7.8-12.4 ml and 12.4-19.9 ml for amylopectin and amylose, respectively 

8 5 (Fig. 4). The molecular weights of amylopectin and amylose were 6.5 x 10 and 5.5 x 10 , 

respectively (Table II). Extrusion of hydroxypropylated (8%) starch at 30% moisture content 

and 100°C with increasing shear produced amylopectins with lower molecular weight of 1.3, 

0.6, and 0.4 x 10* for low, medium, and high shear, respectively (Fig. 4 and Table II), 

compared with 1.5,1.1, and 1.0 x 10® for low, medium, and high shear, respectively, of their 

native com starch counterparts. The lower onset gelatinization temperature of 

hydroxypropylated starch (50.6°C) than that of native com starch (66.1°C) (McPherson et al 

1999), resulted in a higher degree of gelatinization and dispersion during extrusion and 

subsequently more molecular degradation from shear. Increasing extrusion temperatures at 

30% moisture content resulted in decreased amylopectin molecular weight at both low shear 
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(2.7,2.4, and 1.3 x 10* for 60, 80, and 100°C, respectively) and high shear (0.8,0.5,0.4 x 

10* for 60, 80, and 100®C, respectively) (Table II). Similar temperature effects have been 

reported in native wheat starch (Diosady et al 1985) and in native com (Chinnaswamy and 

Hanna 1990). Like that observed in native com starch, extrusion at 40% starch moisture 

content resulted in less degraded amylopectin molecular weights (Table II) and a narrower 

distribution of molecular weight (data not shown). 

Dispersed, unextmded cross-linked (0.014% POCI3) hydroxypropylated (8%) starch 

could not be filtered through a 5.0 ^m syringe filter. Therefore, the molecular weight of the 

unextruded cross-linked starches could not be obtained. After extrusion the cross-linked 

starches could be filtered and analyzed by HPSEC. Amylopectins of the extruded cross-

linked starches had larger molecular weight than those of the native and hydroxypropylated 

starches extmded at the same conditions (Figs. 2,4, and 5). Extrusion of cross-linked 

(0.014% POCI3) hydroxypropylated (8%) starch at 30% moisture and 1G0°C yielded 

amylopectin molecular weights of 5.0, 1.2, and 1.3 x 10* for low, medium, and high shear, 

respectively (Fig. 5 and Table HI), compared with 1.3,0.6, and 0.4 x 10^ for low, medium, 

and high shear, respectively (Table II) of their hydroxypropylated com starch without cross-

linking counterparts. The amylopectin peaks of the extruded cross-linked (0.014% POCI3) 

hydroxypropylated (8%) com starches were not as broad as those of hydroxypropylated (8%) 

and native com starches extruded at the same conditions (Figs. 2,4, and 5), indicating the 

cross-linking prevented the amylopectin molecules firom being highly degraded as those of 

the non-cross-linked starch counterparts (Figs. 2 and 4). The substantially lower molecular 
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weight of the peak two in the extruded cross-linked (0.014% POCI3) hydroxypropyiated (8%) 

com starch than that of the amylose of the unextruded native com starch might be a result of 

large-molecular-weight amylose being preferentially cross-linked to the amylopectin and 

eluted with amylopectin (Jane et al 1992). Cross-linked starches are produced for food and 

industrial applications in which shear resistance is needed (Hullinger 1967, Wurzburg 1986). 

o 

The amylopectin molecular weights were 6.9, 5.3, and 1.7 x 10 for low, mediimi, and 

high shear, respectively, for cross-linked (0.024% POCI3) hydroxypropyiated (8%) com 

starch extruded at 30% moisture and 100°C (Table FV). The amylopectin of extraded cross-

linked (0.024% POCI3) hydroxypropyiated (8%) com starch displayed decreased molecular 

weight with increasing shear (Fig. 6). Extrusion of cross-linked (0.024% POCI3) 

hydroxypropyiated (8%) com starch at 40% moisture also yielded less degraded amylopectin 

compared with their counterparts extmded at 30% moisture (Table IV)- Increases in starch 

moisture content during extrusion at 100°C and high shear resulted in increasing amylopectin 

molecular weights (1.7, 3.6, and 6.7 x 10^ for 30,35, and 40% moisture content, respectively) 

(Table IV and Fig. 7). This agreed with the positive effect of the moisture content on the hot 

paste viscosity and final viscosity of extruded cross-linked hydroxypropyiated (8%) starches 

(McPherson et al 1999). The differences are attributed to a decrease in Motion during 

extrusion at increased moisture content (Lai and Kokini, 1991). 

In contrast to the results of extruded native and hydroxypropyiated com starches, 

extrusion of cross-linked hydroxypropyiated com starches at 30% moisture yielded increased 

amylopectin molecular weight as temperature increased at both low and high shear (Tables I-
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V). Extrusion of cross-linked (0.024% POCI3) hydroxypropylated (8%) com starch at 30% 

moisture yielded jpcreajdng amylopectin molecular weights as temperature increased at low 

shear (3.3,4.3, and 6.9 x 10^ for 60, 80, and I00°C, respectively) and high shear (0.7,0.7, 

and 1.7 x 10* for 60, 80, and 100°C, respectively) (Table IV). This agreed with the reported 

increased average viscosity of starches extruded at 30% moisture with increasing temperature 

of extrusion (60°C to 100°C) (McPherson et al 1999). However, extrusion of cross-linked 

(0.024% POCI3) hydroxypropylated (8%) com starch at 40% moisture and low shear yielded 

decreased amylopectin molecular weight with increasing temperature (9.0, 7.7, and 3.4 x 10* 

for 60, 80, and 100°C, respectively) (Table IV). Amylopectin molecular weight of cross-

linked (0.028% POCI3) hydroxypropylated com starch decreased with increasing shear (12.8, 

4.1, and 2.5 x 10* for low, medium, and high shear, respectively) during extrusion at 100°C 

and 30% moisture (Table V). Increasing the temperature of extrusion at 30% moisture 

jdelded increased amylopectin molecular weights of the cross-linked (0.028% POCI3) 

hydroxypropylated com starch (Table V). 

Extrusion of the starches at 100°C and 30% moisture decreased amylopectin 

molecular weight as shear increased (Tables I-V and Fig. 8). The amylopectin of native com 

starch was not degraded to the same magnitude as that of the hydroxypropylated (8%) com 

starch (Fig. 8). This difference was attributed to the lower gelatinization temperature of the 

hydroxypropylated (8%) starch which resulted in higher degrees of gelatinization and 

dispersion during extrusion. The highly dispersed starch molecules were more susceptible to 

shear degradation. The magnitude of amylopectin molecular weight change, from low to 
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high shear, became more drastic as the level of cross-linking increased (Fig. 8). At low shear 

the chemical cross-links were able to prevent severe molecular degradation, whereas at 

mediimi and high shear substantial degradation occurred to the large cross-linked 

amylopectin molecules. These results agreed with the average viscosity of extruded starches 

decreasing more for chemically modified starches than for the native starch coimterparts as 

shear increased (McPherson et al 1999). 

Extrusion of native com and hydroxypropylated com starches at 30% moisture 

yielded decreased amylopectin molecular weights as temperature increased (Tables I and II) 

(Figs. 9 and 10). Extrusion of cross-linked (0.024% POCI3) hydroxypropylated com starch 

at 30% moisture showed that amylopectin molecular weights were less degraded when the 

extrusion temperature increased (60°C to 100°C), whereas at 40% moisture amylopectin 

molecular weight were more degraded with increasing temperature (Table IV). This effect 

can be attributed to the higher glass transition temperatures of the cross-linked starches. The 

glass transition temperatures at 26% moisture were 29.1,28.3,43.2, and 67.2°C for native, 

hydroxypropylated, and cross-linked (0.014 and 0.028% POCI3) hydroxypropylated (8%) 

com starch, respectively. The glass transition temperature of polymers is known to increase 

with the addition of cross-linking (Nielsen 1974). At 60°C, the cross-linked starch was in the 

glassy state and the rigid molecules were more susceptible to shear degradation. When the 

temperature of extrusion increased, the cross-linked molecules became mbbeiy, and 

degradation decreased. 
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CONCLUSIONS 

Extnision of starches produced substantial morphological changes in granular 

structure. Starches extruded at 60®C showed distorted and fragmented granules, whereas 

those extruded at 100°C showed no granular structure and were completely amorphous. 

Extrusion conditions showed large efifects on the molecular weights of the extruded starches. 

Increasing starch moisture content reduced amylopectin degradation during extrusion. Cross-

linking prevented amylopectin degradation. However, the magnitude of amylopectin 

degradation increased at higher levels of cross-linking as shear increased. Increasing 

temperature of extrusion decreased amylopectin molecular weight of extruded native and 

hydroxypropylated com starches, whereas the opposite effect was observed in cross-linked 

hydroxypropylated starches as a result of glass transition temperature. 
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Table I. Weight average molecular weights of amylopectin and peak two (amylose and degraded 
amylopectin) and gyration radii of amylopectins of extruded native com starches". 

Starch Temp, of Level Amylopectin Gyration Radii of Peak Two Weight 
Moisture Extrusion of Weight Av 11/1^, Amylopectin (R,) AviUI^ 

Content (%) CC) Shear (IWwXlO')" (nm£ (IMI^xloY 

unextruded 7.710.6'^ 368.6 ±16.5 5.5 ±0.2 

30 60 LOW 3.2 ±0.2 296.1 ± 14.2 6.3 ±0.1 
30 80 LOW 2.6 ±0.0 226.7 ±33.1 6.7 ±0.0 
30 100 LOW 1.5 ±0.0 223.8 ± 6.6 5.9 ± 0.2 
30 100 MED. 1.1 ±0.0 240.4 ± 7.1 7.0 ±0.0 
30 60 HIGH 2.6 ±0.2 296.1 ±68.0 7.0 ±0.1 
30 80 HIGH 1.4 ±0.1 242.1 ± 13.5 7.0 ±0.2 
30 100 HIGH 1.0 ±0.1 229.2 ± 0.9 7.3 ±0.2 

40 60 LOW 6.0 ±0.2 363.5 ±67.2 4.1 ±0.2 
40 100 LOW 4.4 ± 0.3 300.0 ± 20.5 5.9 ±0.2 
40 100 HIGH 1.9 ±0.0 268.2 ± 2.5 5.2 ±0.2 

" Results are the average of at least two replications. 
^ Molecular weight determined by light scattering and refractive index detectors. 

Molecular weight determined by pullulan standard curve with refractive index detector. 
^ Standard error. 
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Table II. Weight average molecular weights of amylopectin and peak two (amylose and degraded 
amylopectin) and gyration radii of amylopectins of extruded hydroxypropylated (8%) com starches*. 

Starch Temp, of Level Amylopectin Gyration Radii of Peak Two Weight 
Moisture Extrusion of Weight Av. Amylopectin (R,) Av. My, 

Content (%) (»C) Shear (MwXioY (nm)" (MwXiO* 

unextruded 6.5 ± 0.6" 369.6 ± 27.0 5.5 ± 0.2 

30 60 LOW 2.7 ± 0.0 308.0 ± 29.3 5.8 ±0.1 
30 80 LOW 2.4 ±0.0 242.1 ±11.3 6.3 ±0.0 
30 100 LOW 1.310.1 208.1 ±11.9 5.3 ±0.2 
30 100 MED. 0.6 ± 0.0 178.9 ± 3.4 6.6 ±0.1 
30 60 HIGH 0.8 ± 0.0 253.5 ± 0.7 7.3 ± 0.2 
30 80 HIGH 0.5 ± 0.2 222.5 ± 4,2 7.1 ±0.2 
30 100 HIGH 0.4 ± 0.0 131.8 ± 6.4 6.9 ±0.1 

40 60 LOW 3.7 ±0.3 357.4 ± 44.5 5.2 ±0.1 
40 100 HIGH 1.3±0.1 194.0 ±10.8 6.1 ±0.0 

Results are the average of at least two replications. 
^ Molecular weight determined by light scattering and refractive index detectors. 
' Molecular weight determined by pullulan standard curve with refractive index deteclor. 
** Standard error. 
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Table III. Weight average molecular weights of amylopectin and peak two (amylose and degraded 
amylopectin) and gyration radii of amylopectins of extruded cross-linked (0.014% POCI3) and 
hydroxypropylated (8%) com starches*. 

Starch 
Moisture 

Content (%) 

Temp, of Level of 
Extrusion Shear 

(•C) 

Amylopectin 
Weight Av. M,y 

(MwXioV 

Gyiation Radii of 
Amylopectin (RJ 

(nm)" 

Peal( Two Weight 
Av. I\/I« 

(IWwXioY 

30 100 LOW 5.0 ± 0.4" 381.7 ±4.6 3.6 ±0.0 
30 100 MED 1.2 ±0.1 292.3 ± 6.3 3.7 ±0.1 
30 60 HIGH 1.1 ±0.0 687.5 ± 69.7 4.5 ±0.1 
30 80 HIGH 1.0 ±0.3 424.6 ± 68.4 4.7 ± 0.3 
30 100 HIGH 1.3 ±0.2 286.3 ±25.2 3.9 ± 0.0 

40 100 HIGH 4.5 ±0.2 450.5 ± 34.4 3.9 ± 0.0 

Results are the average of at least two replications. 
^ Molecular weight determined by light scattering and refractive index detectors. 
' Molecular weight determined by pullulan standard curve with refractive index detector. 
^ Standard error. 
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Table IV. Weight average molecular weights M„ of amylopectin and peak two (amylose and 
degraded amylopectin) and gyration radii of amylopectins of extruded cross-linked 
(0.024% POCI3) and hydroxypropylated (8%) com starches*. 

Starch 
Moisture 

Content (%) 

Temp, of 
Extrusion 

(»C) 

Levei Amylopectin Gyration Radii of 
of Weight AvIVL Amylopectin (R.) 

Shear (iUUxlo')" (nm)" 

Peak Two Weight 
Av. fIL 

(MwXiOT 

30 60 LOW 3.310.3" 472.1 ±49.0 3.1 ±0.0 
30 80 LOW 4.3 ±0.2 421.0 ±12.7 3.2 ± 0.0 
30 100 LOW 6.9 ± 0.6 434.3 ±15.3 3.5 ±0.3 
30 100 MED. 5.3 ± 0.4 465.4 ±13.4 3.7 ± 0.0 
30 60 HIGH 0.7 ±0.1 337.6 ±10.6 4.0 ±0.0 
30 80 HIGH 0.7 ± 0.0 411.1 ±11.6 3.7 ± 0.0 
30 100 HIGH 1.7 ±0.0 460.5 ±51.6 4.0 ±0.1 

35 100 HIGH 3.6 ±0.1 400.1 ±5.7 3.4 ± 0.0 

40 60 LOW 9.0 ±0.8 410.6 ±33.0 2.7 ±0.1 
40 80 LOW 7.7 ±0.1 340.7 ±12.2 2.6 ± 0.0 
40 100 LOW 3.4 ±0.1 379.5+ 2.1 3.7 ±0.0 
40 100 HIGH 6.7 ±0.5 417.9 ±10.6 3.4 ±0.1 

' Results are the average of at least two replications. 
** Molecular weight determined by light scattering and refractive index detectors. 
^ Molecular weight determined by pullulan standard curve with refractive index detector. 
** Standard error. 
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Table V. Weight average molecular weights of amylopectin and peak two (amyiose and degraded amylopectin) 
and gyration radii of amylopectins of extruded cross-linked (0.028% POCI3) and hydroxypropylated (8%) 
com starches". 

starch 
Moisture 

Content (%) 

Temp, of 
Extrusion 

CO 

Level of 
Shear 

Amylopectin 
Weight AvIVIw 

(MwXioY 

Gyration Radii of 
Amylopectin (R,) 

(nm)" 

Pealc Two Weight 
AviM^ 

(MwXiOY 

30 60 LOW 7.9 ±0.2 417.4 ±22.3 2.9 ±0.0 
30 80 LOW 9.9 ±0.3 474.5 ± 39.7 2.8 ±0.1 
30 100 LOW 12.8 ±0.8" 575.9 ±34.5 3.2 ± 0.0 
30 100 MED. 4.1 ±0.0 381.4 ±4.2 3.4 ±0.1 
30 60 HIGH 1.5 ±0.0 353.2 ± 29.7 3.1 ±0.0 
30 80 HIGH 1.7 ±0.1 382.1 ±32.1 3.3 ±0.1 
30 100 HIGH 2.5 ±0.1 422.3 ±14.1 3.5 ±0.1 

Results are the average of at least two replications. 
^ Molecular weight determined by light scattering and refractive index detectors. 
' Molecular weight determined by pullulan standard curve with refractive index detector. 
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Figure 1. Scanning electron micrographs of native com starch (A), native com 
starch extruded at 40% moisture, 60°C and low shear (B), native com 
starch extmded at 30% moisture 60°C and high shear (C). cross-linked 
(0.028% POCI3), hydroxypropylated com starch at 30% moisture, 60°C 
and high shear (D), and cross-linked (0.028% POCI3), hydroxypropylated 
com starch at 40% moisture, 100°C and low shear(E). 
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Figure 2. Normalized chromatograms of unextruded native com starch and extruded 
native com starches at 30% moisture and lOO'C at low, medium, and 
high shear (detected by RI). 
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Figure 3. Normalized chromatograms of unextruded native com starch and extruded 
native com starches at 40% moisture and low shear at 60 and 100°C and 
at 40% moisture and high shear at 100®C (detected by RJ). 
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Figure 4. Normalized cbromatograms of the unextruded hydroxypropylated (8%) 
and extruded hydroxypropylated (8%) com starches at 30% moisture and 
100**C at low, medium, and high shear (detected by RI). 
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Figure 5. Normalized chromatograms of extruded cross linked (0.014% POCI3) and 
hydroxypropylated (8%) and cross linked (0.014% POCI3) com starches 
at 30% moisture, 100°C and low, medium, and high shear (detected by Rl). 
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Figure 6. Normalized chromatograms of extruded cross-linked (0.024% POCI3) and 
hydroxypropylated) com starches at 30% moisture, 100®C and low, 
medium, and high shear (detected by RI). 
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Figure 7. Normalized chromatograms of extruded cross-linked (0.024% POCI3) and 
hydroxypropylated com starches at high shear, 100®C and 30,35, and 40% 
moisture (detected by RI). 
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Figure 8. Amylopectin molecular weights of starches extruded at 30% moisture and 
lOCC at low, medium, and high shear. 
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Figure 9. Amylopectin molecular weights of starches extruded at 30% moisture and 
high shear at 60,80, and lOO^C. 
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Figure 10. Amylopectin molecular weights of starches extruded at low shear at 60, 
80, and 100°C (moisture content is given in parentheses) 
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GENERAL CONCLUSIONS 

Starch is utilized in a wide variety of food, pharmaceutical, and industrial 

applications. An understanding of the fimdamentai starch structure - function relationships is 

crucial to optimizing current uses as well as development of new applications. This work 

encompassed three areas of starch structure fimction relationships. First, the contribution of 

the imique molecular structures to different varieties of root and tuber starches. Second, the 

role of extrusion processing variables on the viscosity of extruded starches. Finally, the 

relationship of extrusion processing variables to molecular degradation of extruded starches. 

The physical and chemical properties of waxy potato starch were examined and 

compared to those of normal potato, yam, and sweet potato starches. Normal potato and 

waxy potato starches and Naegeli dextrins of both displayed the B-type x-ray diffraction 

pattern. Yam and sweet potato starches displayed the C^- and C-type x-ray diffraction 

patterns. The Naegeli dextrins of yam and sweet potato starches displayed the A-type x-ray 

diffraction pattern. NMR showed the phosphorous contents of the starches and the 

Naegeli dextrin of normal potato to be primarily phosphate monoesters. Normal and waxy 

potato starches displayed lower proportions of short branch chains than did yam and sweet 

potato starches. Normal potato starch was found to have a higher proportion of long branch 

chains than waxy potato. 

Extrusion variables of starch moistiare, barrel temperature, and screw design were 

examined in terms of thermal and pasting profile analysis in a series of cross-linked and 

hydroxypropylated com starches. Pasting profiles were shown to be an effective method to 
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follow extrusion variable effects. Increasing starch moisture content and level of cross-

linking were shown to significantly increase starch viscosity. Increasing shear and barrel 

temperature significantly decreased starch viscosity. Significant interactions were found 

between level of cross-linking and screw design and between extrusion temperature and 

starch moisture content 

Although pasting profile analysis was effective tool to monitor viscosity changes due 

to extrusion variables high performance size exclusion chromatography (HPSEC) was shown 

to be a powerful tool to follow variables on a molecular basis. HPSEC, with multi angle 

laser light scattering and refiractive index detection, revealed the molecular weights of both 

amylose and amylopectins in the non-cross-linked, unextruded starches and the changes in 

molecular weight with extrusion. The addition of cross-linking both increased the molecular 

weight of the amylopectin molecules and prevented severe degradation. Increasing starch 

moisture content also lessened amylopectin degradation, whereas increasing temperature had 

the opposite effect. 
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